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Abstract. Brainwaves present a compelling avenue for secure person authentica-
tion because they are inherently unobservable externally and capable of facilitating
liveness detection. Harnessing brainwave’s unique and individualistic attributes, they
have found extensive utility in various authentication applications. Nonetheless, the
domain of brainwave authentication research has witnessed an upsurge in diverse exper-
imental setups and the meticulous fine-tuning of parameters to optimize authentication
methodologies. The substantial diversity in their methods poses a significant obstacle
in assessing and measuring authentic research advancements. To address this multi-
faceted issue, this thesis introduces a versatile and robust benchmarking framework
tailored explicitly for brainwave authentication systems. This framework draws upon
the resources of four publicly accessible medical-grade brainwave datasets. It is worth
mentioning that our study encompasses a substantial sample size consisting of 195 par-
ticipants. The number of participants in our study is noteworthy, particularly when
compared to the customary approach in brainwave authentication research, which typ-
ically involves a participant pool about one-fifth the size of our study. Our extensive
assessment encompassed a variety of state-of-the-art authentication algorithms, includ-
ing Logistic Regression, Linear Discriminant Analysis, Support Vector Machine, Naive
Bayes, K-Nearest Neighbours, Random Forest, and advanced deep learning methods
like Siamese Neural Networks. Our evaluation approach incorporated both within-
session (single-session) and cross-session (multi-session) analysis, covering threat cases
like close-set (seen attacker) and open-set (unseen attacker) scenarios to ensure the
tool’s versatility in di�erent contexts. In within-session evaluation, our framework
showcased outstanding performance for several classifiers, particularly Siamese Net-
works, which achieved an Equal Error Rate of 1.60% in the unseen attacker scenario.
Additionally, our benchmarking framework’s adaptability is a notable asset, allowing
researchers to tailor pre-processing, feature extraction, and authentication parameters
to suit their specific requirements.
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Introduction
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1.1 Motivation

The confidentiality of information is one of the most crucial components of data security, and
it is vital that only authorized individuals can access sensitive information [1]. Authentication
procedures play an essential role in maintaining information confidentiality by verifying the
user’s identity requesting access to secure data [2]. User authentication comprises two key
stages: enrollment and verification [3]. In the initial phase, the user registers or enrolls in the
system, leading to the capture and storage of the user’s data in the database. Subsequently, In
the second phase, the authenticity of the user’s data is checked by matching the user’s presented
data with his existing data in the database. The system either gives or refuses access to the
user based on the degree of resemblance [4]. At present, there are three approaches to user
authentication: authentication based on knowledge (e.g., password), authentication based on
possession (e.g., token or ID card), and authentication based on biometrics (e.g., fingerprint,
iris, facial recognition, or other biometric data) [5].

Knowledge-based authentication is the simplest method, which involves verifying the identity
of a user by requesting a password or PIN (personal identity number) known only to the user.
Knowledge-based authentication methods, such as the use of passwords, o�er several benefits,
including user-friendliness and ease of maintenance. Further, passwords can be revoked with
ease when compromised. However, passwords su�er from many vulnerabilities, such as complex
passwords that are often hard to remember. As a result, users reuse short and easy-to-remember
passwords across multiple websites, exposing the passwords to attackers for breach [6]. A study
by Das et al. [7] analyzed a large dataset comprising several hundred thousand stolen passwords
from eleven distinct websites. In addition, they conducted a poll on password reuse, which
allowed them to estimate that a substantial proportion of users, ranging from 44% to 51%,
employ the same password across several websites. In their study, the authors also developed
a cross-site guessing platform to guess approximately 10% of the nonidentical password pairs
in fewer than ten attempts and approximately 30% in fewer than 100 attempts. Furthermore,
passwords can also be stolen through casual eavesdropping (shoulder surfing) [6], or can be
guessed using sophisticated hacking algorithms such as dictionary search attacks in which words
and word combinations are hashed and then checked for matches against hashed passwords
[8]. The inherent security vulnerabilities associated with password usage compromise their
e�ectiveness in establishing robust authentication systems.

Possession-based authentication requires the user to possess something such as a token ID
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to verify their identity. Like passwords, tokens are easy to maintain and can be revoked easily if
lost or compromised. Another benefit is its capability to detect compromises, as its absence can
be observed, which is not the case with the loss of a password [8]. While tokens may provide
certain benefits compared to passwords, they are not an infallible authentication method, given
various security vulnerabilities. For instance, tokens are susceptible to theft [9] and duplication,
meaning that someone might create a counterfeit device [8].

The third form of authentication is biometric-based, relying on distinctive user biometrics for
authentication [8]. Biometrics can be categorized into two groups: physiological and behavioral.
Physiological biometrics pertain to the physical attributes of the human body, which inherently
di�er among individuals [10]. Examples of physiological Biometrics include fingerprints, facial
recognition, hand geometry, and iris recognition [11]. On the other hand, behavioral biometrics
refers to an individual’s behavior, such as gait, voice, or signature. Unlike passwords and
tokens, biometrics do not need to be memorized or physically carried everywhere. They are
also unique and cannot be imitated easily. Biometrics provide more e�ective authentication
mechanisms than passwords and tokens, but biometric-based authentication still needs to be
indomitable. Biometric data, like voice, facial features, iris, retina, and fingerprints, can be
captured or photographed [9]. Further, unlike passwords and tokens, biometrics are not easy to
replace if they are lost or compromised [8], and the person with specific physical disabilities (e.g.,
blindness or quadriplegia) cannot use biometric systems, requiring eyes, fingerprints, or gait to
authenticate. Each of the authentications, as mentioned earlier methods, has its own merits
and weaknesses which need to be addressed. An alternative authentication method is required
to overcome existing authentication methods’ weaknesses and provide a robust mechanism to
verify the identity of users.

There has been a rise in interest in using brain activity for next-generation biometric sys-
tems to fill in the gaps left by current biometric techniques or to complement them [12]. The
technological advances in the last few years have made it possible to obtain brain signals using
Electroencephalography (EEG) and utilize the unique characteristics of EEG signals to verify a
person’s identity [13]. The following are some of the advantages of brainwaves that give them a
giant leap over other biometric traits for authentication:

1. Unlike observable biometric traits like face or gait that can be exploited for identification
without consent [14], brain activities remain hidden from external observation and are
therefore impervious to any form of surveillance [12].

2. It is also impractical to steal brainwaves due to the susceptibility of a person’s brain activity
to their stress and mood. Attackers cannot compel the victim to replicate their mental
passphrase [14]. For example, suppose a person is frightened or stressed out. In that case,
the brainwaves recorded during the authentication phase will di�er significantly from the
brain data collected during the person’s enrollment into the system. Thus, the system
would refuse to grant access if an attacker forces the person to provide his brainwaves.

3. Brainwaves can only be produced by living brain tissue [15]. Therefore, brainwaves are a
promising candidate for being used as a biometric trait since they can readily handle the
main problem of liveness detection in other biometrics [12].

4. Brainwaves are organically a part of the human body, so even those people who are physi-
cally disabled can utilize them, unlike with fingerprints or other types of technology, which
may not be possible [9].
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Chapter 1. Introduction

1.2 Problem Description

As elaborated in the previous section 1.1, authentication systems based on brainwaves o�er
a compelling alternative to conventional authentication systems. However, simply building a
brainwave authentication system under the presumption that the chosen algorithm or evaluation
metrics confer optimal security is insu�cient. Even the most meticulously designed brainwave
authentication system may have hidden flaws that are not immediately discernible. As a result,
it is crucial to identify and address the specific research gaps to ensure that the system being
developed provides robust and reliable security. The following research gaps in the field of EEG-
based person authentication are the focus of the study described in this thesis, which will be
designed to improve the system’s high levels of security, performance, and stability.

1. Comparative Performance Evaluation and Reporting

An EEG-based person authentication system’s e�ectiveness relies on data preprocessing,
feature extraction, and modeling techniques. Numerous machine learning algorithms such
as Linear Discriminant Analysis (LDA) [16], Support Vector Machine (SVM) [17], and
Naïve Bayes (NB) [18] have been proposed and focused on optimizing the Accuracy (ACC)
of the system. However, examining the performance of authentication models based on
the ACC metric can be flawed if we have an imbalanced dataset [19]. To comprehensively
evaluate an authentication model, other essential metrics like the False Acceptance Rate
(FAR), True Positive Rate (TPR), and False Rejection Rate (FRR) must be considered.

FAR measures the rate at which the system erroneously grants access to an unauthorized
person. In contrast, FRR provides insight into situations where the system incorrectly
denies access to an authorized individual. The Equal Error Rate (EER), the intersection
point between the FAR and FRR, provides a fair and balanced evaluation [12]. Moreover,
looking beyond ACC, FAR, and FRR comparisons becomes necessary due to the nuanced
trade-o�s intrinsic to system implementation that these conventional metrics may obscure
[19]. The metrics mentioned are strongly associated with particular settings of classifi-
cation threshold. Therefore, it is advisable to utilize Receiver-Operating-Characteristic
(ROC) curves for visualizing outcomes, as they e�ectively depict the correlation between
FAR and TPR (1-FRR) across various threshold values [12].

Evaluating existing research on brainwave authentication is intricate due to inconsistent
metric reporting, often limited to optimized configurations without ROC curves and vari-
ations in samples, algorithms, and experimental conditions. These unreported or unac-
counted factors impact performance analysis [20]. Therefore, conducting a study that
thoroughly assesses and reports the authentication system’s robustness using robust met-
rics such as FAR, FRR, EER, and ROC curves is essential.

2. Retraining of Authentication Models

A typical brainwave authentication algorithm requires the creation of a unique classifier
for each individual. Accordingly, these classifiers are trained to recognize the individual
designated as ’authenticated’ and reject all other users labeled ’rejected.’ Although this
strategy was initially successful, it faced significant challenges as new users were added to
the system. Each new user obligates extensive retraining of the existing classifiers, a step
vital for acclimating these classifiers to the unique characteristics of the new user. This
computationally demanding repeated retraining raises significant scaling issues. Addition-
ally, it hinders the system’s capacity to e�ectively adapt to real-world scenarios where user
bases frequently change, diminishing its general e�ectiveness and usefulness.
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To address the issue of recurrently retraining authentication algorithms inherent in tradi-
tional approaches, a solution must be formulated that harnesses advanced deep learning
techniques, such as Siamese Neural Networks. These networks can train the model once
and then utilize the pre-trained Siamese model to evaluate the legitimacy of newly in-
troduced users to the system, overcoming the frequent retraining of the authentication
models.

3. Triviality on Open-Set Scenarios

It is essential to consider all the threat case scenarios when developing any authentication
system based on brainwaves. The performance of EEG-based authentication systems can
be evaluated using two attack scenarios: close-set and open-set scenarios. The close-
set scenario assumes that the attacker is enrolled in the system and, therefore, part of
the system. Conversely, the open-set strategies present a more significant di�culty as
the system in this particular context recognizes the potential presence of unidentified
or unauthorized individuals seeking to obtain access. The open-set scenario provides a
more realistic approach since the attacker is not guaranteed to be always known to the
system. Moreover, in the context of EEG-based authentication, the presumption that
the authentication systems have already encountered the attacker is unrealistic since the
authentication systems typically do not have access to the brain signals associated with
the attacker[20]. Hence, the authentication systems must be able to identify and reject
the known attackers and the attackers utterly unknown to the system. Regrettably, most
studies on EEG-based authentication have focused primarily on close-set scenarios, often
overlooking the security ramifications of the open-set scenarios. Thus, it is pivotal to
devise authentication systems that place equal importance on exploring and addressing
open-set scenarios.

4. Lack of Research on Inter-Session variability

Most of the research on brainwave authentication is conducted by utilizing brain signals,
usually collected during a single EEG recording session. Researchers would often split the
single-session EEG data for training and testing the e�ectiveness of the authentication sys-
tem. However, brain signals can be impacted due to the person’s surrounding environment
or the individual’s state of mind, introducing variability in the EEG data across multiple
sessions and potentially a�ecting the system’s overall performance. Unfortunately, most
researchers working on brainwave authentication systems have not addressed this issue.
As a result, an extensive study must be conducted on multi-session EEG data where the
robustness of the authentication system should be tested on sessions conducted on di�erent
days to investigate if the inter-session variability among users can account for a significant
drop in the system’s performance.

5. Reproduciblity of Implementation

It is also seen in EEG studies that the parameters of the pre-processing procedures, the
toolboxes utilized, and implementation techniques are often hidden or reported in a very
abstract manner [21]. This lack of transparency often propels researchers to spend consid-
erable time trying to reproduce the results reported by state-of-the-art (SOA) proposals.
As a result, the process of replication and advancement in brainwave authentication is
impeded due to the opaque style of reporting followed within the scientific community.

To cultivate a more cooperative and forward-thinking scientific community, researchers
must adopt a stance of transparency when disseminating the intricate aspects of their au-
thentication system’s implementation. By transparently revealing methodological specifics,

4



Chapter 1. Introduction

researchers can enable their peers to understand better, replicate, and validate their find-
ings. Therefore, conducting a comprehensive study on brainwave authentication becomes
essential where the specific implementation details are made transparent, providing re-
searchers with valuable resources to evaluate and enhance their methodologies.

6. Benchmarking Datasets

Although many studies are available on brainwave authentication, there is still a glaring
shortage of open EEG datasets in the scientific community since most researchers chose
to keep the EEG data private. Furthermore, the majority of EEG datasets that have been
made available to the public involve a small number of participants (N<=25), including
studies such as [22, 23, 24, 25]. These small-size datasets do not provide a complete picture
of the real-world performance of brainwave authentication systems, and the results gener-
ated by utilizing those datasets could be highly optimistic as they do not capture the entire
spectrum of EEG variability across a larger population. As a remedy, a comprehensive
study should be undertaken, utilizing EEG datasets encompassing participant numbers
exceeding 25. This approach would enhance comparing and evaluating various authen-
tication methods using extensive datasets, promoting more comprehensive and authentic
assessments.

In conclusion, because of the extreme di�erences in the experimental approach employed by
various researchers, it is di�cult to assess the actual research progress on brainwave authenti-
cation. In order to tackle this issue, I address the research question:

How do state-of-the-art (SOA) and deep learning-based brainwave authentication models compare
when assessed under identical conditions?

1.3 Solution Overview

This section presents an initial overview of the envisioned proposal’s framework. Within the
scope of this thesis, we have undertaken two primary endeavors. Firstly, we have crafted an
advanced benchmarking tool meticulously designed to encompass a range of automated machine
authentication pipelines. This tool facilitates a comprehensive performance assessment of diverse
EEG-based authentication models across various open EEG datasets. The benchmarking tool
has been carefully designed to meet the research questions outlined in section 1.2.

Simultaneously, we engage in a comprehensive comparative analysis of distinct brainwave
authentication algorithms. This analysis encompasses varying evaluation methodologies, threat
scenarios, and the diverse parameters influencing authentication algorithm performance. The
following points o�er a concise overview of our suggested solutions tailored to address the re-
search questions articulated in the previous section.

1. Each dataset in our benchmarking tool incorporates data from a sizeable population
(N>=25). The collective number of participants from our selected datasets comes out
to be 195, which is approximately a quadruple increase over earlier studies in brainwave
authentication. Therefore, based on such a large population, our designed authentication
framework allows for better coverage of EEG variability throughout a broader spectrum.
Consequently, the results derived from our study, which includes 195 participants, will be
more reliable and generalizable as they are less likely to show bias or overly optimistic
expectations.
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2. Our benchmarking tool employs Siamese Neural Networks alongside some SOA algorithms
like Support Vector Machine (SVM), Logistic Regression (LR), Linear Discriminant Anal-
ysis (LDA), Random Forest (RF), Naive Bayes (NB) and k-Nearest Neighbours (KNN).
Siamese Neural Network is a specific type of neural network with two or more identical
sub-networks working in tandem. These concurrent sub-networks are trained with the
same hyperparameters to generate the embedding in latent space. Such embedding serves
as compact, representative vectors of the input data. This parallel configuration is then
utilized to ascertain the similarity among the inputs by comparing their feature vectors
[26]. One of the most significant advantages of using Siamese Network is that it mitigates
the problem of retaining once a new user is enrolled into the system. Rather than retrain-
ing the entire model each time a new user is registered, Siamese Network can generate
unique embeddings for the newcomer and compare it to the existing ones, thus reducing
computational time significantly.

3. One of the main objectives of this study is to investigate the influence of inter-session
variability among individuals arising from EEG data collection across multiple sessions.
The tool has been carefully crafted to facilitate authentication assessments in datasets,
including single-session and multi-session data. This approach allows us to evaluate the
performance of authentication algorithms when applied to EEG data collected from di-
verse sessions. Consequently, we can better comprehend the ramifications of inter-session
variability on human authentication.

4. This thesis delves into a crucial research area that highlights the importance of under-
standing both close-set (known attackers) and open-set scenarios (unknown attackers) for
evaluating the e�ectiveness and real-world application of brainwave authentication sys-
tems. Hence, our study goes beyond focusing solely on close-set scenarios and strongly
emphasizes open-set scenarios. As a result, our tool has been diligently designed to facil-
itate the evaluation of diverse authentication methods across both close-set and open-set
threat scenarios.

5. Our tool evaluates the performance of authentication algorithms using a variety of evalua-
tion metrics such as TPR, FAR, FRR, EER, and ROC-Curves, all of which ensure unbiased
results—particularly ROC-Curves, less sensitive to imbalanced datasets [19]. We also re-
port FRR corresponding to FAR at 1%, which is essential to balance the system’s security
and usability. Lower FAR correlates to security’s enhanced security measures while FRR
pertains to the system’s ease of use [20]. Therefore, it is imperative to ascertain whether
lowering the FAR threshold to increase security may unintentionally render the system
less usable. Utilizing all the evaluation mentioned above metrics in our study provides an
e�ective solution to the first research question outlined in the previous section.

6. Our tool has been specifically designed to meet the needs of researchers active in brainwave
authentication. One of the main objectives of our study is to build a framework that should
alleviate the time-consuming processes of pre-processing, feature extraction, parameter
selection, and classification. The framework’s adaptability allows it to integrate with the
new data provided by the researchers seamlessly. Our framework significantly reduces
the time burden for researchers and o�ers essential guidance in determining the optimal
parameters for their studies.
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Chapter 1. Introduction

1.4 Thesis Structure

In this chapter, we have articulated the primary motivations driving this study, outlined the
research questions we want to answer, and given a rough outline of the approach we want to
take. The next chapter will deal with brainwave authentication’s foundations, including the core
concepts of brainwave authentication, such as standard EEG devices, data acquisition proce-
dures, data processing methods, and authentication algorithms. Chapter 3 will be focused on
the current proposals and state-of-the-art research works compared to the challenges considered
in this thesis. In the subsequent chapter 4, we o�er an in-depth analysis of the surveyed open
datasets and provide a high-level overview of the workflow within our benchmarking suite. The
practical implementation and methodologies devised by us to build the framework will be de-
scribed in detail in chapter 5. The evaluation aspects of this study will be discussed in chapter
6. In this chapter, we do two kinds of evaluation. One aspect to consider is the evaluation of our
benchmarking tool itself. This assessment involves conducting tests on our tool using di�erent
authentication parameters to determine if our tool e�ectively addresses the issues outlined in
section 1.2. The second phase of the assessment employed our tool to reproduce findings from
previous studies on benchmarking brainwave authentication systems. Subsequently, a compari-
son study was conducted between the replicated results obtained using our tool and the original
findings of the studies as mentioned above. In the upcoming chapter 7, the limitations inherent
in our study will be discussed. Chapter 8 concludes with a discussion of this study’s findings
and potential future enhancements to the proposed benchmarking tool.
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Background

2

Biometric authentication generally uses unique physical or behavioral traits of humans that are
generally collected through sensors, processed, and compared to stored samples for access. Brain-
wave patterns, however, require specific tasks or stimuli for acquisition, making them distinct
from other biometrics [20]. As depicted in Figure 2.1, the EEG-based authentication system is
segmented into distinct phases, encompassing data acquisition, subsequent data processing, and
the pivotal classification model responsible for user verification.

• EEG measurement Devices (Section 2.1): EEG devices encompass various equip-
ment, from sophisticated medical-grade headsets to user-friendly and portable consumer
devices. In addition to headsets, the EEG experiment necessitates using amplifiers that
magnify the subtle brain signals, enabling their analysis.

• Data Acquisition Procedures(Section 2.2): The processes or tasks for EEG data
acquisition that need to be carried out to induce distinct brainwave activity and capture
the related changes in voltage levels. [20].

• EEG Pre-Processing (Section 2.3): In this stage, the objective is to eliminate any
interference from the EEG data obtained during the acquisition process, thereby enhancing
the clarity and quality of the EEG signals.

Figure 2.1: An authentication process based on EEG involves a sequence of essential stages,
including data acquisition, data processing, and the classifier acting as the decision maker [20].
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• EEG Feature Extraction (Section 2.4): Identifies and extracts the distinctive signal
characteristics essential for the process of authentication, enabling accurate verification.

• Authentication Algorithms (Section 2.5): Constructs the subject classification mod-
els aimed at determining whether the individual is verified or not.

2.1 EEG measurement Devices

To acquire the EEG) signals, an EEG apparatus necessitates the inclusion of sensors capable of
establishing conductive contact with the scalp. An amplifier that facilitates real-time filtering
and common mode rejection, an analog-to-digital converter (A/D converter), and a personal
computer (PC) to store the digitized data [27]. The EEG headset, which records the brain
activity, includes sensors arranged according to the 10-20 or 10-10 system, which are international
standards for consistent placement of electrodes, ensuring comparability across subjects and
studies. The naming of the electrodes within these systems follows a specific convention that
represents the brain region underneath (e.g., F for frontal, C for central) and an odd or even
number indicating the hemisphere (odd for left, even for right) [28]. Frequently utilized EEG
devices include the ActiveTwoSystem designed by Biosemi (Amsterdam, Netherlands)1 and the
g.GAMMAcap developed by G.Tech Medical Engineering GmbH2. An example EEG headset
from G.Tech is illustrated in Figure 2.2 (a). These medical-grade EEG systems can support up
to 256 channels, allowing for comprehensive data collection. This feature o�ers a benefit as it
facilitates a greater extent of spatial coverage on the scalp, resulting in a more comprehensive
dataset [27].

Although medical-grade EEG devices are known for their ability to gather data of high
quality, the considerable expense associated with these devices and the complexities needed
in establishing the EEG connection pose notable obstacles. In response to these constraints,
there has been a proliferation of cost-e�ective and user-accessible EEG devices in recent times,
presenting viable substitutes. Instances of such devices include the ENOBIO developed by Neu-
roelectrics (Barcelona, Spain)3, the EPOC/EPOC+ wearable neuroheadset designed by Emotiv
Systems, Inc. (San Francisco, USA)4, along with the Muse headband crafted by InteraXon
(Ontario, Canada)5. An EPOC/EPOC+ wearable EEG headset equipped with 14 sensors is
depicted in Figure 2.2 (b). Consumer devices are cheaper than medical-grade EEG headsets
and more friendly but have a poor signal-to-noise ratio [27].

2.2 Data Acquisition Procedures

The activity of neurons in the brain is notably impacted by individuals’ mental conditions, dis-
playing a marked sensitivity to both external environmental triggers and internal self-control
mechanisms. This necessitates the development of tailored data collection approaches for captur-
ing EEG signals e�ectively [31]. EEG data acquisition often entails implementing meticulously
planned EEG experiments, wherein subjects engage in a range of cognitive tasks or maintain a
state of rest, with the option of having their eyes either open or closed [27].

Resting-related tasks are the simplest to accomplish. Typically, resting-state tasks involve
recording brain activity when participants are calm, relaxed, and not performing cognitive tasks.

1
http://www.biosemi.com/

2
https://www.gtec.at/

3
https://www.neuroelectrics.com/

4
https://www.emotiv.com/epoc/

5
https://choosemuse.com/
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(a) Medical grade EEG headset from g.tec
[29]

(b) EPOC/EPOC+ wearable headset [30]

Figure 2.2: In Figure (a), we can observe the g.GAMMAcap, which is among the frequently
utilized medical-grade EEG headsets. Moving on to Figure (b), we see the EMOTIV EPOC+
device equipped with 14 EEG electrodes.

As a result, resting state protocols have been employed in many brainwave authentication studies
such as [32, 33]. Paranjape et al. [34] suggested an EEG-based authentication system while
subjects sit in a relaxed state with closed/open eyes task. The Autoregressive model (AR) was
utilized for extracting the discriminant biological features, and a classification ACC of 80% was
achieved. Although resting tasks provide a straightforward approach to data collecting, they
are susceptible to external influences, making it challenging to guarantee a completely silent
environment in a real-world application setting [31].

In contrast to protocols for rest, protocols for cognitive activities are characterized by a
higher degree of complexity. One classification of cognitive protocols pertains to mental tasks.
Mental tasks involve the subject imagining something specific (e.g., imagining moving their left
and right hand or imagining closing or opening a fist), causing the associated EEG signals to
appear [27]. In a study by Brigham and Kumar [35], the brain activity of six participants was
examined. These individuals were directed to imagine the articulation of two syllables, namely
/ba/ and /ku/, while deliberately shifting the rhythm. The participants needed to be provided
explicit instructions regarding the desired rhythm. Following a similar approach as observed in
the study by Paranjape et al. [34], the researchers in the study also employed AR coe�cients to
extract features from the signals of each electrode. Utilizing the SVM classification model, their
results demonstrated an impressive accuracy rate 97.76%. Mental tasks demonstrate suitability
for people across various physical limitations and visual impairments, exhibiting a high degree of
applicability [31]. Nevertheless, it is worth noting that motor imagery and mental tasks demand
specialized training to generate proper brain responses, making them challenging to execute [35].

The other type of cognitive protocol is based on event-related potentials (ERP). ERPs are
a particular type of evoked potentials, time-locked to brain variations that appear in reaction
to external stimuli [31]. They are generally elicited by exposing subjects to external audio
or visual stimuli. ERPs can be influenced by various factors, including the subject’s level of
knowledge, motivation, and cognitive abilities, making them more likely to manifest unique and
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Figure 2.3: EEG signal strength against frequency, 0–100 Hz, showing 50 Hz line noise.

distinctive characteristics beneficial for authentication objectives [36]. Mu et al. [37] introduced
an innovative approach to ERPs by exposing participants to stimuli in the form of self-photos
and non-self-photos. They utilized fuzzy entropy extracted from the EEG signals for personal
authentication. They employed Neural Networks (NN) to classify these features, yielding an
impressive accuracy rate exceeding 87.3%. Compared to EEG, one notable drawback of ERPs is
the increased complexity of the elicitation methods associated with ERPs. EEG can be obtained
without needing specific stimulation of the user, but ERPs can only be obtained when the user
is subjected to a particular and carefully controlled kind of stimulation [27].

2.3 EEG Pre-Processing

After the EEG data is acquired, it is imperative to eliminate any noise intruding on the EEG
signals to obtain clean and precise readings. EEG signals can be corrupted by various artifacts,
either of a physiological or non-physiological nature. Physiological artifacts are non-EEG sig-
nals introduced by di�erent biological activities such as heartbeat, muscle contractions, or eye
movements. In contrast, non-physiological artifacts typically arise from the EEG acquisition
system or external environmental factors, including electromagnetic fields from the electronic
devices [27]. Following are some of the standard cleaning processes usually employed in EEG.

2.3.1 EEG Filtering

As previously stated, EEG data is susceptible to interference from electrical appliances, leading
to noise mostly at frequencies of 50 Hz in Europe (as depicted in Figure 2.3) and 60 Hz in the
USA. This phenomenon arises due to the prevailing power line frequencies in the corresponding
geographical areas. Therefore, employing a notch filter, specifically a band-stop filter with a
small stopband centered at 50 Hz or 60 Hz, is common practice to eliminate line noise e�ectively
[38]. Other filtering methods include low pass filtering, which entails the elimination of higher
frequencies; high pass filtering, which eliminates frequencies below a specific threshold while
preserving high frequencies [39]; and bandpass filtering, which combines the above filtering
techniques. The bandpass filter selectively keeps frequencies within the specified upper and
lower bounds while eliminating frequencies that do not fall within this range. Furthermore, the
Butterworth filter, known for its maximally flat magnitude in the passband, is widely used in
pre-processing EEG data [27].
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2.3.2 Artifacts Rejection

One often employed approach for mitigating physiological artifacts is discarding EEG data over
a predefined threshold of EEG voltage [40], such as 100µV since physiological artifacts gener-
ally exhibit significantly greater magnitudes in comparison to cerebral activity [27]. However,
a more sophisticated method of rejecting artifacts is the peak-to-peak rejection method. This
approach involves identifying and removing EEG segments that surpass a predetermined voltage
range. This range is commonly determined by measuring the peak-to-peak amplitude, which is
the di�erence between the highest positive and lowest negative deflections within a specific time
frame [41]. While the peak-to-peak rejection technique e�ciently eliminates noisy signals, its
application can inadvertently remove substantial valuable EEG data. This outcome is particu-
larly possible when the method is not executed after meticulous assessment, as the amplitude of
EEG signals can significantly di�er based on experimental configurations and the characteristics
of the utilized headsets.

2.3.3 Independent Component Analysis

The Independent Component Analysis (ICA) is an innovative signal processing technique that
enables the separation of sources that have been linearly mixed at the sensors. This separation
is achieved by assuming simply the statistical independence of the sources [42]. According to
Hyvärinen et al. [43], the ICA algorithm can be defined by the following equation.

S · X = U (2.1)

where S is the unmixing matrix, X is the signal of EEG channels where each row corresponds
to a sensor channel, each column corresponds to a time point in the recorded signals, and U
represents the matrix of the estimated independent source signals. This method enables the
segregation of EEG signals from noise and randomly mixed signals, contributing significantly to
enhanced signal quality and analysis.

2.4 EEG Feature Extraction

The feature extraction technique is vital in EEG-based authentication, transforming pre-processed
EEG signals into concise yet informative representations [44], facilitating accurate subject clas-
sification. EEG features can be organized into various domains, encompassing the time domain
(such as Autoregressive Coe�cients), the frequency domain (like Power Spectral Density), and
the time-frequency domain (including Wavelet Transform). The subsequent methods are fre-
quently utilized for feature extraction in EEG-based authentication studies.

2.4.1 Autoregressive Coe�cients

Autoregressive (AR) coe�cients are a class of time-domain features frequently utilized in EEG-
based authentication. The AR model is a form of linear regression that involves regressing the
current observation of a time series against one or more previous observations of the same series
[45]. The following equation can mathematically represent the AR model [27]:

x(n) = ≠
pÿ

i=1
aix(n ≠ i) + e(n). (2.2)

Where x(n) represents the current value of a particular channel, ai denotes the AR coe�cients
at specific delay i, e(n) represents the error at time n, and p represents the order of the model.
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Estimating AR coe�cients can be accomplished using methods including Yule-Walker and
Burg. The coe�cients o�er valuable insights into the temporal dynamics of EEG data [46], hence
contributing to the characterization of subject-specific patterns and assisting in the authentica-
tion process. Hine et al. [47] proposed an EEG-based biometric recognition system that employs
AR coe�cients extracted through the Burg method to capture distinguishing features from a
cohort of 50 subjects engaged in the study. In contrast to employing any state-of-the-art (SOA)
machine learning algorithm for subject identification, this study adopted a di�erent approach
by utilizing the Manhattan distance to measure the similarity of the features. This method used
the Manhattan distance metric to compare the enrolled samples with the corresponding test
samples from the same subject.

2.4.2 Power Spectral Density

Transforming EEG data into the frequency domain facilitates extracting and discriminating
prominent frequency components. EEG signals can be divided into numerous frequency bands,
such as ” (1-4 Hz), ◊ (4-8 Hz), – (8-12 Hz), — (12-30 Hz), and “ (30-45 Hz). These frequency
bands correspond to various types of brain activity [27]. The delta wave is a prominent oscillatory
activity observed within the 1–4 Hz frequency range during deep or slow wave sleep. It is
primarily associated with attention to internal cognitive processes. On the other hand, the
theta wave, ranging from 4–8 Hz, is more closely linked to memory retrieval and access. The
alpha wave, falling within the frequency band of 8–14 Hz, is predominantly generated in the
parietooccipital region during states of relaxation with closed eyes. In contrast, the beta band,
spanning 14–30 Hz, is specifically associated with the conscious perception of stimuli. Lastly,
exceeding 30 Hz, the gamma band is involved in the transient functional integration of neural
activity across di�erent brain regions [48].

The Power Spectral Density (PSD) is employed to represent the power distribution of a sig-
nal across di�erent frequency points [31], and it is calculated by various methods such as Fourier
Transformation (FT) or Discrete Fourier Transformation (DFT) using Welch’s periodogram al-
gorithm. Welch’s algorithm has been utilized in many studies to estimate frequency bands’
power spectrum. Welch’s technique involves segmenting the input signals with overlap and gen-
erating the periodogram by squaring the magnitude of the Discrete Fourier Transform (DFT)
[27]. This approach reduces the variance from the signal by averaging the overlapping segments
of the periodograms [49] and thus producing an unbiased power spectral estimate of the di�er-
ent frequency bands in EEG. A pertinent example of the application of Welch’s periodogram
algorithm can be found in the work of Hema et al. [50]. In their study, the authors harnessed
the potential of Welch’s method to compute the PSD of EEG Beta waves. Ericsen et al. [51]
employed Welch’s approach of PSD estimation, which is based on the Fast Fourier Transform
(FFT) technique, to extract the band power of 4 frequency bands, namely ◊, –, —, and “.

2.4.3 Wavelet Transform

The Wavelet Packet Decomposition (WPD) emerges as a unique evolution of the discrete wavelet
transform (DWT), recognized for its augmented filtration technique applied to the discrete tem-
poral data [52]. This amplified filtration approach empowers the WPD to achieve an intricate,
multi-level dissection of signals across the time-frequency spectrum [53]. The WPD approach
provides a wider range of frequency resolutions compared to the traditional discrete wavelet
transform. In contrast to the DWT, which decomposes a signal into its core approximation and
detail coe�cients components, the WPD technique follows a more detailed approach. The anal-
ysis extends beyond the fundamental levels of detail and approximation coe�cients, exploring
more intricate layers of complexity. The WPD approach exhibits divergence by systematically
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unraveling the signal’s coe�cients, encompassing intricate details and broad patterns. This
process leads to constructing a comprehensive and complex wavelet packet tree [45].

2.5 Authentication Algorithms

Following the transformation of EEG signals into distinctive features, the subsequent stage
involves subject classification based on these extracted features. This classification method treats
each individual as a separate category, and the extracted features are organized into categories
corresponding to each person. The classification model is then trained using supervised learning
to establish a direct mapping between the features and individual identities. This mapping
enables authentication through a one-to-one relationship between the extracted features and
the respective individuals [31]. In more recent times, the application of deep learning methods
has also gained traction in brainwave authentication research. Below, we present a compilation
of some of the frequently employed state-of-the-art (SOA) and deep learning authentication
algorithms for EEG-based authentication systems.

2.5.1 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) represents a traditional linear learning technique that aims
to identify a linear combination of attributes across diverse categories to characterize or discern
them [31]. The primary objective of LDA is to employ hyperplanes to segregate data from
distinct classes. This segregation is achieved by projecting the data into a lower-dimensional
space. LDA seeks to optimize the separation between classes by maximizing the inter-class
distance. This optimization is carried out under the assumption of normal data distribution,
ensuring equality of covariance matrices across various categories [27]. LDA stands as a widely
employed classifier within the realm of brainwave authentication studies. Rocca et al. [54]
conducted research in which they gathered EEG data from a sample of 36 participants while
they were in a state of rest with their eyes closed. Bump modeling was employed to extract
pertinent features from the raw EEG signal, and the classification task was executed using the
LDA classifier. The study produces exceptional results, with ACC reaching as high as 99.69%.
In the study by Koike-Akino et al. [55], EEG signals were collected from 25 subjects in an
ERP-focused EEG experiment. To enhance the e�ciency of feature extraction and address
the high dimensionality of EEG data, the researchers utilized Principal Component Analysis
(PCA). Employing LDA for classification, the team achieved a remarkable accuracy rate of
96.7%, underscoring the e�ectiveness of their approach in accurate subject identification.

2.5.2 Support Vector Machine

The Support Vector Machine (SVM) is a binary classification model that employs a hyperplane to
classify two distinct data classes by optimizing the margin, which refers to the distance between
the closest training instances from di�erent classes [27]. SVMs are known for their strong
generalization skills. What makes SVM particularly powerful is its emphasis on the points lying
closest to the margin, called support vectors [56]. Illustrated in Figure 2.4, the support vectors
play a pivotal role in positioning the optimal hyperplane [57], enabling SVM to prioritize the
most informative instances and mitigating the impact of outliers [58]. This characteristic makes
SVM inherently resistant to overfitting [59], ensuring that the model generalizes well to new,
unseen data. Furthermore, SVM is not only limited to linear separations; it can also utilize kernel
functions to transform the data into a higher-dimensional space [58]. This transformation can
help SVM capture complex and nonlinear relationships between features, enabling it to handle
intricate decision boundaries that may not be possible in the original feature space.
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Figure 2.4: An SVM hyperplane visually represents the maximum separation between the sup-
port vectors associated with the two classes, i.e., positive and negative [57].

SVMs have been widely utilized in brainwave authentication research because they can pro-
cess intricate EEG data and e�ectively deliver precise subject identification. Pham et al. [3]
employed an SVM algorithm to analyze EEG data from a cohort of 9 participants actively
involved in motor imagery activities. The researchers extracted vital features from the EEG sig-
nals, precisely AR linear parameters, and PSD components. The results showcased a remarkable
performance with an EER spanning from 0% to 3.3%.

2.5.3 Logistic Regression

Logistic Regression (LR) is a statistical approach extensively employed in machine learning to
address binary classification challenges. The sigmoid function, often the logistic function, deter-
mines the relationship between input attributes and the likelihood of belonging to a particular
class [60]. Analyzing the training data, the algorithm selects an optimal decision boundary that
e�ectively segregates the two classes [61]. LR has found its application in EEG-based authen-
tication systems because it can e�ectively characterize complex relationships within brainwave
patterns for subject classification tasks. Piplani et al. [62] an EEG-based identity authentica-
tion method utilizing two publicly available datasets involving 31 subjects. They employed the
XGBoost with LR classifier for classification, achieving a baseline accuracy of 90.8% in their
study.

2.5.4 K Nearest Neighbour

The K-Nearest Neighbour (KNN) is a straightforward, non-parametric technique. It implies that
it arrives at decisions by considering the majority consensus of the nearest or most akin data
points to the given inputs [27]. KNN operates through a two-step process. During the initial
stage, it identifies the data points close to the target data point. The determination of closeness
is accomplished via the use of distance metrics such as Euclidean or Manhattan distance. In the
subsequent step, the algorithm assigns the target data point to a particular class based on the
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classes of its neighboring data points [63]. Zúquete et al. [64] conducted a study that employed
visual stimulation to elicit brain responses from 70 individuals, with the objective of biometric
identification. The KNN classifier achieved an average Area Under Curve (AUC) of 0.9817,
indicating strong performance in discriminating individuals based on their brain responses.

2.5.5 Gaussian Naive Bayes

The Naive Bayes (NB) theorem is a method rooted in probability theory, specifically Bayes’
theorem, which elucidates the likelihood of a specific event occurring given prior knowledge
about associated occurrences. Gaussian Naive Bayes (GNB) is a particular variant of the Naive
Bayes algorithm that assumes the features follow a Gaussian (normal) distribution [65]. Put
di�erently; it is assumed that the continuous values of attributes belonging to each class follow
a normal distribution. This opposes the conventional assumption made by Naive Bayes that
features are categorical and adhere to discrete distributions. Valsaraj et al. [66] conducted
a comprehensive analysis of EEG signals to identify distinctive features associated with both
physical movement and imagined upper limb motions. This research endeavor encompassed 10
participants and focused on four distinct upper limb movements. Employing the GNB algorithm
for authentication purposes, the study achieved an impressive accuracy rate of 89% for imaginary
motions and 85.7% for physical movement tasks.

2.5.6 Random Forest

The Random Forest (RF) [67] algorithm is a popular ensemble learning technique employed in
machine learning to address classification and regression problems. It creates multiple decision
trees during the training phase and then combines their predictions to make more accurate and
robust predictions [68]. One key benefit of RF is its ability to handle high-dimensional feature
spaces [69]. EEG data frequently encompasses a substantial number of channels and temporal
dimensions, leading to a considerable quantity of features. Random Forest’s feature selection
mechanism and ensemble approach allow it to e�ectively manage these complex feature sets,
preventing overfitting and enhancing generalization [69]. Another advantage is RF’s resilience
to noisy data [67]. As previously mentioned in section 2.3, it is essential to acknowledge that EEG
signals are prone to several artifacts and sources of noise, which have the potential to impact
the accuracy of categorization. RF ensemble approach mitigates this problem by averaging
out the impact of noise, improving the overall robustness of the authentication system. RF
has been employed in various EEG-based authentication works because of its adaptability to
high-dimensional data, capability to handle complex relationships, and robustness against noise.
In the study by Chowdhury and Imtiaz [70], EEG data was collected across three consecutive
sessions involving 21 subjects. The research showcases that the proposed machine learning
model, based on the RF algorithm, demonstrates an authentication accuracy of approximately
83.2%.

2.5.7 Deep Learning

The authentication algorithms mentioned above are state-of-the-art machine learning techniques
commonly employed in EEG-based authentication studies. However, a limitation inherent in
these methods lies in their dependency on a discriminative feature set resulting from the feature
extraction process. Furthermore, many of these machine learning approaches primarily address
static data, rendering them less proficient in accurately classifying EEG signals that exhibit
temporal variations [31].
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Figure 2.5: A sample configuration of a Neural Network structure encompassing an input layer,
a single hidden layer, and an output layer.

Deep learning methods, such as neural networks (NN), have emerged as robust solutions to
address this limitation. As depicted in Figure 2.5, the standard approach to developing a neural
network often includes using a multi-layer perceptron design. This architecture consists of three
main layers: the input, multiple hidden, and output layers. The network utilizes the feedforward
mechanism in combination with the backpropagation algorithm to ease the training of data and
the creation of weight matrices. Consequently, predictions can be derived using the ascertained
weight matrix [27].

Numerous deep learning methodologies, including Convolutional Neural Networks (CNN),
Recurrent Neural Networks (RNN), and Long Short-Term Memory (LSTM) networks, have
found widespread application in a multitude of EEG-centered authentication studies due to
their ability to find intricate brain patterns in the raw EEG signals. As an illustration, in a
study by Yu et al. [71], the authors utilized a direct input approach, feeding the raw EEG
signals of 8 subjects into a CNN architecture. The input dataset encompassed 534 time points
gathered from 44 EEG channels. This devised framework yielded an impressive accuracy rate
of around 97%, with a remarkably low FAR of 0.06% and a minimal FRR of 3.15%. This
approach demonstrates the e�cacy of CNN models in processing raw EEG signals for robust
authentication purposes.
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3

Brain signals unique attributes and individualistic patterns have attracted considerable research
on constructing brainwave authentication systems. Many researchers have presented various
studies on brainwave authentication systems, utilizing di�erent classifiers, EEG acquisition tasks,
and distinct features. However, due to the considerable diversity in experimental approaches
adopted by various researchers, evaluating the advancements in brainwave authentication re-
search has become complex. Recent studies have emerged to address this challenge by under-
taking comprehensive comparative analyses. These analyses aim to provide a clearer under-
standing of the e�cacy and performance of brainwave authentication methodologies. Moreover,
researchers have also sought to investigate cross-session variability among individuals, further
enhancing the depth and comprehensiveness of the research landscape. Alongside these e�orts,
some studies have delved into advanced deep learning techniques, such as Siamese Networks, as
potential solutions to issues like retraining within SOA algorithms when new users are added to
the system. Consequently, this section will explore a range of relevant studies that closely align
with the research goals of our study, including research that benchmarks brainwave authentica-
tion algorithms, examines inter-session variability among individuals, and investigates Siamese
Networks as a potential solution to the retraining issue in SOA algorithms.

3.1 Previous Research on Evaluating and Comparing Brainwave

Authentication Methods

In brainwave authentication, benchmarking studies play a vital role in setting new standards and
evaluating the e�ectiveness of newly proposed methods compared to the SOA authentication
algorithms. This section overviews some of the benchmarking studies conducted for brainwave
authentication. Khalafallah et al. [72] conducted a comprehensive analysis of authentication
algorithms, including LR, SVM, and LDA. They gathered EEG data from 29 participants wear-
ing Neurosky Mindwave1 headsets and 10 wearing Emotiv2 headsets while subjects were resting
with their eyes closed for 50 seconds. The study found that LR performed the best among the
algorithms tested. With the Mindwave dataset, they achieved a false acceptance error (FA)
of 3% and a higher false rejection error (FR) of 48%, resulting in overall accuracy (ACC) of
approximately 80%. The Emotiv dataset achieved an FA of 0.3%, an FR of 13.93%, and an
ACC of 92.88%. Jayarathne et al. [73] took a distinct approach in their benchmarking study

1
https://store.neurosky.com/pages/mindwave

2
https://www.emotiv.com/epoc/
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of EEG-based authentication systems. They gathered EEG data from 12 participants through
an ERP task involving visual simulations of 4-digit numbers on a screen. The study focused on
SVM, LDA, and KNN algorithms for analysis. After assessing accuracy across di�erent EEG
channel combinations, the study concluded that the most e�ective classifier was KNN with an
ACC of 99.0±0.8%, followed by SVM with 98.03±0.1% ACC and LDA with 98.01±0.5% ACC.

Fang et al. [74] conducted a study using the publicly available DEAP [75] dataset, which
included 32 participants. EEG data collection in the dataset involved participants watching a
40-second music video depicting five emotions: neutral, angry, sad, happy, and pleasant. Feature
extraction was performed using PSD and Di�erential Entropy (DE). The study encompassed a
comparative analysis of several algorithms, including KNN, RF, SVM, and a modified algorithm,
the Multi-Feature Deep Forest Method (MFDM), an extended version of the RF classifier. The
study’s findings indicated that the average accuracy for MFDM, RF, SVM, and KNN was
approximately 71%, 68%, 52%, and 63%, respectively. The outcomes derived from this study
were not particularly promising. A comprehensive comparative study by Arias-Cabarcos et al.
[12] in 2021 encompassed an extensive dataset of 52 subjects engaged in five distinct ERP tasks.
The study involved feature extraction through AR coe�cients and power spectrum (PS) analysis
of –, —, and “ frequency waves. Among the four SOA algorithms, including SVM, KNN, GNB,
and LR, the GNB classifier demonstrated the best performance, achieving an EER of 14.5%,
followed by SVM with 40% EER and KNN with 47% EER.

Deep learning methods have recently gained prominence in various comparative analyses
concerning brainwave authentication, aiming to assess their e�ectiveness compared to SOA al-
gorithms. One such study conducted by Huang et al. [76] incorporated both SOA algorithms
such as NB, LR, and a deep learning approach known as Back Propagation Neural Network
(BPNN). EEG data was gathered from 30 participants as they engaged in ERP tasks that in-
cluded auditory and visual stimuli. The study extracted seven statistical features from the data,
such as mean, median, standard deviation, entropy, maximum, minimum, and skewness, to get
a comprehensive insight into the data distribution, central tendency, and variation. NB demon-
strated the worst performance among the classifiers, registering average ACC, TPR, and False
Positive Rate (FPR) of 77.96%, 75.71%, and 19.80%, respectively. LR exhibited superior per-
formance compared to NB, achieving average ACC, TPR, and FPR values of 81.59%, 79.04%,
and 15.05%, respectively. Remarkably, the BPNN method showcased exceptional performance,
boasting average ACC, TPR, and FPR of 82.69%, 81.96%, and 17.38%, respectively. Meanwhile,
Zhang et al. [77] conducted an extensive comparative analysis on a broader spectrum of authen-
tication algorithms, encompassing five distinct methods: KNN, Bagging, RF, AdaBoost, and
NN. The study utilized two well-established public datasets, namely the Fantasia ECG dataset
[78, 79] and the UCI EEG dataset3. The study included EEG data of 20 subjects from each
dataset. On the UCI dataset, which features EEG data, RF demonstrated the highest accuracy
at 86%, trailed by NN and KNN. However, classifiers Bagging and AdaBoost displayed relatively
poorer performance, achieving accuracy levels of only 66.7% and 73.9%, respectively.

3.2 Siamese Neural Networks in Brainwave Authentication Stud-

ies

As noted in section 1.2, most brainwave authentication studies employed SOA machine learning
algorithms to discern between genuine users and imposters. These models often require the
learning algorithms to retrain whenever new users are added to the system, which reduces the

3
https://archive.ics.uci.edu/dataset/121/eeg+database

20

https://archive.ics.uci.edu/dataset/121/eeg+database


Chapter 3. Related Work

model’s e�ectiveness and hinders practical application [26]. Some studies proposed a solution
to this problem by employing deep learning procedures to learn embeddings of the brain signals
and subsequently calculating similarities between them. Following this approach, Bidgoly et
al. [80] presented a notable study employing the publicly available Physionet dataset [81] for
brainwave authentication. The dataset contains EEG recordings from 109 subjects, captured as
the subjects performed resting tasks for 5 seconds. The study utilized CNN to generate the brain
embeddings during training and verify the authenticity of the new users by comparing their data
with the stored samples using similarity metrics like Cosine Similarity, Euclidean Distance, and
Manhattan Distance. The best-performing similarity function was Cosine Similarity with EER
of just 1.96%, followed by Manhattan and Euclidean with 3.91% and 5.65% EER, respectively.
The study provides a more realistic scenario and addresses the critical challenge of identifying
new users whose brain data were not introduced during training. However, this approach may
not be universally accepted since deep learning methods like CNN often require large amounts
of data to optimize parameters during the model’s training, an aspect often impractical given
the limited size of most brainwave datasets [82].

Maiorana [83] proposed a broader solution to overcome the problem of frequent retraining
and to obtain the results with minimal EEG samples by employing the Siamese Neural Network
approach. The study aimed to perform EEG-based verification and investigate the e�ects of
intra-class variability across subjects whose brain signals were collected in 5 sessions over 15
months. Two identical CNNs received inputs in the form of the pre-processed brain samples
and, then, were trained with the same parameters and weights to produce the brain embeddings.
Afterward, the similarity of these embeddings was computed using Euclidean distance. The
achieved EER was less than 7% for the 30-second verification probe, a significantly good result
considering the cross-session variability in brain data.

Lately, Fallahi et al. [26] presented their work on Siamese Networks for brainwave-based
recognition in verification and identification mode. The study was conducted employing the EEG
recordings from two publicly available EEG datasets such as BrainInvaders (b12015a) [84]
and ERP Core [85]. Unlike Maiorana’s [83] methodology, which used contrastive loss function
for determining the similar and dissimilar brain embeddings, Fallahi et al. opted for a triplet loss
function for their approach. As a result, three sub-networks, each with five convolution layers,
produce embeddings, which were then evaluated under both close-set (i.e., seen attackers) and
open-set (i.e., unseen attacker) scenarios. In verification mode, the calculated EERs for the close-
set scenario were notably less than those of open-set scenarios, with dataset b12015a having an
EER of a mere 0.14% for seen attackers. Similar trends were seen in identification mode where
EER for the dataset b12015a was 0.34%, the lowest among all the datasets.

3.3 Existing studies exploring cross-session variability

Although studies investigating the e�ects of inter-session variability in brainwave authentication
are scarce, researchers have focused on this area. One of the most extensive works on this area
was done by Huang et al. [86] in 2022, who explored EEG variability across sessions, subjects,
and tasks. The study contains EEG data from 106 subjects; 96 out of 106 participated in
two sessions on di�erent days. Six paradigms, including resting state, transient state sensory,
steady state sensory, cognitive oddball, motor execution, and steady-state sensory with selective
attention, were conducted throughout the entire EEG experiment. 12th-order AR, PSD, and
Mel Frequency Cepstral Coe�cients (MFCCs) were chosen to extract the discriminant features
from the brain signals, and the SVM classifier was employed to perform the identification and
verification task. Additionally, Huang et al.’s research included both within-session and cross-
session evaluations in the context of identification and verification. There was a noticeable

21



3.3 Existing studies exploring cross-session variability

performance decline in the cross-session evaluation compared to the within-session evaluation.
In the verification task, the average EER across all paradigms increased twofold, escalating
from 0.16 in within-session evaluation to 0.32 in cross-session evaluation. Similarly, in the
identification task, the average accuracy fell dramatically from 0.70 in within-session to 0.31 in
cross-session evaluation. This study’s results show the necessity for more significant research
into EEG variability across sessions and subjects.

While the results of Huang et al.’s cross-session evaluation were inferior, Seha and Hatzinakos
[87] in 2020 produced impressive results in a similar study area using steady-state Auditory
Evoked Potentials (AEPs) for EEG-based recognition. The study involved an EEG experiment
on 40 subjects across two sessions on separate days. The study demonstrated exceptional results
even when evaluated across cross-session (multiple-sessions). EER of a mere 2-4% was achieved
in cross-session evaluation, which is 16 times more e�ective than that of Huang et al.’s work on
cross-session evaluation.
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4

This study aims to develop a benchmarking suite for EEG-based authentication and incorporates
various open medical-grade EEG datasets that include a substantial number of participants
(n>100). The performance and robustness of the di�erent authentication algorithms will be
compared with appropriate metrics to determine which algorithm is most e�ective and on which
dataset. As illustrated in Figure 2.1, the initial step in constructing a brainwave authentication
pipeline involves EEG data collection. Therefore, as a starting point, we conducted a thorough
survey of numerous EEG datasets, elaborated upon in section 4.1.

4.1 Survey Open Datasets

Creating an e�cient and robust EEG benchmarking framework involves collecting high-quality
EEG datasets, which is essential since the quality of datasets can significantly influence the
overall e�ectiveness of the framework. The following issues can arise if poor-quality datasets are
used for developing the benchmarking framework:

1. Random Classification: Noise in the EEG data can obscure the model from identifying
the meaningful brain data and random noise. It could lead the model to classify the users
based on their brain data randomly.

2. Erroneous or Biased Results: The imbalance in the participant’s population in the
datasets may lead to overestimating the evaluation metrics such as accuracy [19]. Ad-
ditionally, skewed datasets introduce biases into the system, so the results generated by
those authentication systems cannot be trusted.

3. Increased Pre-Processing Time: Most of the data cleaning is done during the pre-
processing stage, and considering that the bad-quality datasets also have a low signal-to-
noise ratio (SNR), the researchers often spend a considerable amount of time handling the
noisy data.

4. Overfitting or Underfitting: Low-quality datasets can induce issues of overfitting or
underfitting during the construction of machine learning models. Overfitting transpires
when the model’s complexity becomes excessive, causing it to incorporate noise into its
learning process. On the contrary, underfitting appears when the model’s simplicity is
inadequate in capturing the intricate patterns within the data [88]. Both situations can
potentially result in incorrect predictions and a decrease in the model’s e�ectiveness.
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5. Limited Reproducibility: If the datasets are of inadequate quality, the other researchers
would not be able to reproduce the results, questioning the reliability of the initial research.

While consumer devices are known for their user-friendly interface and simplicity, it is es-
sential to note that the data produced by these devices generally exhibit a lower signal-to-noise
ratio (SNR) than those generated by medical-grade EEG equipment. Considering the potential
pitfalls of utilizing low SNR datasets, we focus on high-quality medical-grade EEG datasets for
our study. Open datasets vary across the EEG headsets, the number of electrodes (channels),
stimuli tasks, EEG paradigms, physical setup, and file format. As a result, researchers have
traditionally recorded a new dataset or used one of the few well-known datasets when they have
to validate a new approach [21]. However, recording a new medical-grade EEG dataset can be
an intricate task as it requires experts’ assistance to set up the devices and correctly monitor
the participant’s brain activity. Therefore, our study primarily focuses on harnessing publicly
available high-quality EEG datasets as the first step.

Considering that ERPs have a reasonably good SNR, less susceptibility to background per-
turbations [89], and can assess instantaneous reactions to short stimuli [31], we propose to
focus on the comparison of di�erent algorithms based on ERP paradigms like P300 and N400
which can fill the gaps left by other data acquisition protocols and provides a more robust au-
thentication mechanism. P300 is a positive deflection in voltage that reaches its peak at 300
milliseconds (ms) following exposure to a specific stimulus and is usually triggered using the
"oddball" paradigm, in which a subject detects an occasional or rare stimulus in a regular train
of standard stimuli [90]—for example, encountering a picture of an animal (a rare stimulus) in
a series of images, targeting human celebrities (standard stimuli). On the other hand, N400 is
a negative deflection that peaks around 400 ms after the presentation of a stimulus, and N400
responses are associated with stimuli connected to semantic processing, such as language pro-
cessing [12]. As a result, we decided to exclusively survey and concentrate on the open datasets
based on ERP paradigms like P300 and N400 on the internet.

Collecting quality EEG datasets was tedious since most researchers in the EEG domain
do not make their datasets public because of privacy and confidentiality issues. Nevertheless,
despite these obstacles, our assiduous search yielded more than 40 datasets, procured from
websites known for providing repositories for high-quality EEG datasets, such as OpenBCI 1,
Zenodo 2, MOABB 3, Dryad 4, OSF 5 and Figshare 6. Table 4.1 and Table 4.2 list some
of the publicly available P300 and N400 datasets that we reviewed during our study, organized
chronologically by the year of their release. Four datasets [91, 92, 85, 93] were selected for our
research, based on the ERP and the other criteria: 1) an ERP paradigm such as P300 or N400
2) raw data available 3) implementation code available 4) Multi samples per subject available
6) Number of subjects (N>=25). We chose the second condition to apply the standardized
pre-processing, feature extraction, and authentication steps across all datasets. This uniform
process is essential to evaluate their performance under similar experimental conditions, which
is impossible without access to unprocessed raw data. As a result, we discarded datasets from
our study, which only provided pre-processed data. Additionally, we did not want to utilize
datasets where subjects provide a single sample because a single brain sample cannot capture
the EEG variability across di�erent instances of the same subject. Consequently, we applied
the condition to include only the datasets with multiple samples per subject. In the subsequent

1
https://openbci.com/community/publicly-available-eeg-datasets/

2
https://zenodo.org/

3
http://moabb.neurotechx.com/docs/datasets.html

4
https://datadryad.org/stash

5
https://osf.io/

6
https://figshare.com/
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sections, we provide a concise overview of the datasets included and excluded in our study.

Table 4.1: Publicly available ERP datasets based on P300 (oddball) paradigm

Dataset Year #Subjects EEG Device #Channels Sampling Rate #Sessions EEG task

BrainInvaders12 [94] 2012 25 NeXus-32 16 128 Hz 1 Visual Stimuli

BrainInvaders13a [95] 2013 24 g.GAMMAcap 16 512 Hz 1 Visual Stimuli

BrainInvaders14a [96] 2014 64 g.Sahara 16 512 Hz 1 Visual Stimuli

BrainInvaders14b [97] 2014 37 g.GAMMAcap 32 512 Hz 1 Visual Stimuli

Gao et al. [98] 2014 30 Neuroscan 12 500 Hz 1 Visual Stimuli

BrainInvaders15a [91] 2015 43 g.GAMMAcap 32 512 Hz 1 Visual Stimuli

BrainInvaders15b [99] 2015 44 g.GAMMAcap 32 512 Hz 1 Visual Stimuli

Mou�ek et al. [100] 2017 250 BrainVision 3 n.a. 1 Visual Stimuli

Hubner et al. [23] 2017 13 BrainAmp DC,
Brain Products

31 1000 Hz 1 Visual Stimuli
Auditory Stimuli

Sosulski and Tangermann [101] 2019 13 BrainAmp,
EasyCap

31 1000 Hz 1 Visual Stimuli

Lee et al. [102] 2019 54 BrainAmp 62 1000 Hz 2 Visual Stimuli

Simões et al. [22] 2020 15 g.tec 8 250 Hz 7 Visual Stimuli

Goncharenko et al. [103] 2020 60 NVX-52 8 500 Hz 1 Visual Stimuli

Chatroudi et al. [104] 2021 24 g.tec 64 1200 Hz 1 Visual Stimuli

Cattan et al. [105] 2021 21 g.USBamp, g.tec 16 512 Hz 1 Visual Stimuli

ERPCORE: P300 [85] 2021 40 Biosemi 30 1024 Hz 1 Visual Stimuli

Won et al. [106] 2022 55 Biosemi 32 512 Hz 1 Visual Stimuli

4.1.1 Overview of the selected Datasets

This section provides an overview of the datasets incorporated into our study. All the datasets
mentioned below were carefully selected following a comprehensive analysis, ensuring they meet
all the criteria for dataset selection.

1. BrainInvaders15a [91]
The EEG recordings in this dataset were made while 50 participants (36 males, 14 females)
with a mean (standard deviation) age of 23.55 (3.13) were playing the Brain Invaders
visual P300 BCI video game. The user interface employs a unique paradigm on a grid
of 36 symbols, with one symbol designated as the target and the remaining 35 as non-
targets. These symbols are presented in a pseudo-randomized fashion to elicit the P300
response. In Figure 4.1, the interface of Brain Invaders is depicted during the initial level,
explicitly capturing the instance when a cluster of six non-Target symbols briefly flashed in
white. The red symbol represents the Target. The non-illuminated objects not exhibiting
a flashing behavior are depicted in grey. In the study, participants played Brain Invaders
for three sessions, each with nine levels and varying flash durations. Nevertheless, there
was an absence of a substantial hiatus between each session. Hence, the three-game rounds
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Table 4.2: Publicly available ERP datasets based on N400 (Semantic Priming) paradigm

Dataset Year #Subjects EEG Device #Channels Sampling Rate #Sessions EEG task

Pijnacker et al. [107] 2017 45 actiCap 32 500 Hz 1 Auditory Stimuli

Draschkow et al. [108] 2018 40 BrainAmp,
actiChamp

64 1000 Hz 1 Visual Stimuli

Marzecová et al. [109] 2018 18 BrainAmp 59 500 Hz 1 Visual Stimuli

Mantegna et al. [93] 2019 31 BrainAmp,
EasyCap

65 512 Hz 1 Auditory Stimuli

ERPCORE: N400 [85] 2021 40 Biosemi 30 1024 Hz 1 Visual Stimuli

Hodapp and Rabovky [110] 2021 33 BrainAmp 64 1000 Hz 1 Visual Stimuli

Rabs et al. [111] 2022 38 BrainVision 26 500 Hz 1 Visual Stimuli

Schoknecht et al. [112] 2022 38 ActiCap,
ActiChamp

58 500 Hz 1 Visual Stimuli

To�olo et al. [25] 2022 24 Biosemi 128 512 Hz 1 Auditory Stimuli

Lindborg et al. [113] 2022 40 BrainVision 64 2046 Hz 1 Visual Stimuli

Stone et al. [114] 2023 64 TMSi Refa 32 512 Hz 1 Visual Stimuli

were regarded as a unified session. Three flash durations (50 ms, 80 ms, and 110 ms) were
employed to record EEG data using 32 active wet electrodes.

2. COGBCI: Flanker [92]: It was relatively straightforward to acquire single-session datasets;
however, finding appropriate multi-session datasets proved much more di�cult. Despite
encountering some multi-session datasets, only a few satisfy the stringent policies set for
our study to be used for benchmarking. Section 4.1 covers the factors that guided us to
choose our datasets for the analysis in great detail. After analyzing a handful of multi-
session datasets, we narrowed our selection to one particular dataset, which o�ered three
EEG recording sessions, i.e., COG-BCI. The COG-BCI dataset described in this study
consists of recordings from 29 participants who completed three separate sessions, each
conducted at an interval of 7 days. Each session included four distinct tasks: the Psy-
chomotor Vigilance Task (PVT) [115], the N-Back Task [116], the Multi-Attribute Task
Battery (MATB) Task [117], and the Flanker Task [118]. These tasks were specifically de-
signed to elicit various cognitive states. The authors employed a 64-electrode Ag-AgCl Ac-
tiCap (Brain Products Gmbh) EEG system with an ActiCHamp (Brain Products Gmbh)
amplifier placed following the extended 10-20 system.

Due to its similarity to ERP paradigms, the Flanker task was selected as the optimal
choice for our investigation out of all four tasks. The task induces interference and conflict
e�ects, similar to the N400 paradigm, by presenting stimuli with congruent and incon-
gruent flankers. As our study concentrates on ERP analysis, the flanker task provides a
relevant framework for investigating cognitive control and neural responses using ERPs.
The Flanker task is a choice reaction task derived from the study of Eriksen and Eriksen
(1974) [118] and is designed to induce conflict while making a binary choice. The partici-
pants are exposed to stimuli consisting of five arrows positioned at the center of a computer
screen. Participants are instructed to respond to the central arrow while disregarding the
surrounding (flanker) arrows. These flanker stimuli can aim in the same direction as the
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Figure 4.1: Brain Invaders user interface at the game’s introductory stage [84].

Figure 4.2: Flanker Task: After an Inter stimulus of 2000 ms, one of four possible stimuli
(bottom left) is displayed for 18 ms. Participants then have between 2250 and 2750 milliseconds
to respond before receiving 500 milliseconds of feedback [92].
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Figure 4.3: The experimental setup for the ERPCORE: N400 task involving a specific configu-
ration designed to elicit and measure the N400 component [85].

central target (congruent condition) or in the opposite direction (incongruent condition).
Figure 4.2 illustrates the flanker task’s experimental procedure. Upon the conclusion of
the trial, the participant is provided with feedback regarding the outcome of their perfor-
mance, explicitly indicating whether their response was correct, incorrect, or a miss. A
total of 120 trials are conducted, with each complete run having an approximate duration
of 10 minutes.

3. ERPCORE: N400 [85]: This dataset has been used in various brainwave-based recog-
nition studies such as [20, 26, 119]. It was developed for seven often studied ERP com-
ponents: N170, MMN, N2pc, N400, P3, lateralized readiness potential (LRP), and ERN.
The study included 40 participants, consisting of 25 females and 15 males. The partici-
pants were selected from the University of California, Davis community. The mean age of
the participants was 21.5 years, with a standard deviation of 2.87. The age range of the
participants was between 18 and 30 years. For our study, we focused on the N400 task. A
word pair judgment task was employed to elicit the N400 component in this task. Every
experimental trial comprised a red prime word that was subsequently followed by a green
target word. Participants were required to indicate whether the target word was seman-
tically related or unrelated to the prime word. The experimental setup for ERPCORE:
N400 is depicted in Figure 4.3.

4. Mantegna et al. (mantegna) [93]: The dataset utilized in this study is derived from
EEG investigations, explicitly focusing on the analysis of N400 target word modulations.
The researchers of this study examined the potential for disentangling integration and
prediction in the modulation of ERPs N400 during language processing. To do this,
they used a stimulus assignment to complete sentences with rhyming words in various
contexts with varying degrees of word predictability. All individuals who took part in the
experiment were native speakers of the Dutch language, as the investigation was carried out
in Dutch. In this experimental study, participants were provided with rhyming sentence
completions. This experiment was carried out in three distinct stages. The first two stages
consist of conducting online experiments with thirty and, respectively, 44 individuals. The
third and ultimate stage of the study entails conducting an EEG experiment involving
31 participants. This experiment involves participants listening to 135 rhyming sentences
with either congruent or incongruent endings. The primary objective of this experiment
is to elicit N400 ERPs. Figure 4.4 illustrates an instance of a sentence pair.

4.1.2 Datasets Excluded from the Final Study

The subsequent points outline and provide descriptions of datasets that could have been con-
sidered for our study but were ultimately excluded because they did not meet certain inclusion
criteria we had established.
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Figure 4.4: Three alternative target words were selected for each sentence pair. In the congruent
case, there was overlap in the rhymes, and the target word was easy to guess based on its
meaning. In the middle case, there were words that rhymed with the target word, but the
target word was not predictable based on its meaning. There was no rhyme overlap in the
incongruent case [93].

• Mou�ek et al. [100]: This dataset was made available for public use in 2017. The EEG
experiments were conducted in primary and secondary schools across the Czech Republic,
involving approximately 250 students (aged 7 to 17). The study aimed to elicit P300 by
asking the participant to select a number between 1 and 9. The subject is presented with
corresponding visual stimuli while experimenters observe online event-related potential
waveforms and attempt to predict the number being considered.

This dataset has, by far, the most participants, i.e., 250, and also fulfills all the conditions
we set for the dataset inclusion in our study. However, the issue resides in the methodology
employed during the execution of the experiment. According to our dataset analysis, each
subject has a variable number of brain samples. Each subject’s EEG experiment was termi-
nated when the experimenter accurately guessed the number being tested. Consequently,
the number of brain samples for certain participants is meager because the experimenter
was able to correctly predict the number after observing the P300 waveforms of the subject
for a short period. Conversely, the experimenter could not accurately guess the correct
number for other subjects even after three attempts, resulting in more samples being ob-
served for such subjects. We believed such an unbalanced dataset could be susceptible to
bias and overfitting, so we chose not to include it in our study.

• Hubner et al. [23]: As shown in Table 4.1, this dataset was generated at a sampling
rate of 1000 Hz using the EEG amplifier BrainAmp DC. The EEG experiment involved
the visual representation of German sentence "Franzy jagt im komplett verwahrlosten Taxi
quer durch Freiburg" three times, and the participants were asked to spell it. The pool of
participants in this dataset was a meager 13, which led to its exclusion from our study.

• Sosulski and Tangermann [101]: The dataset was generated utilizing the P300 (au-
ditory oddball) paradigm, in which participants were instructed to focus their attention

29



4.2 Workflow

on infrequent high-pitched target tones while disregarding frequent low-pitched non-target
tones. Similar to the study by Hubner et al., this dataset contains only 13 subjects, whereas
our selection criteria for datasets require a participant cohort of at least 30 subjects.

• Draschkow et al. [108]: The purpose of generating this dataset was to elicit N400 e�ects,
and the EEG experiment in this study was carried out on a sample of forty participants.
Participants were exposed to semantic inconsistencies, wherein an object exhibited incon-
gruity with the intended meaning of a given scene. The dataset was initially deemed
suitable for our study and was included. However, we encountered an issue while working
on this dataset. Our framework is designed to scrap EEG data from the internet directly.
Unfortunately, during the retrieval process from the data repository, we encountered an
error indicating an issue with the file’s integrity. Despite implementing numerous technical
alternatives, our attempts to resolve this issue have proven unsuccessful. As a result, we
were unfortunately obliged to omit this dataset from our study, as it remained inaccessible
for subsequent analysis and processing.

• Hodapp and Rabovky [111]: This research presented 120 pairs of German sentences
to 33 participants. The sentence pairs were intentionally constructed so the ultimate tar-
get word in each pair could exhibit either semantic congruence or incongruence. The
EEG experiment aimed to induce N400 e�ects in the participants. Nevertheless, the pub-
licly available data provided by the researcher has already undergone pre-processing. As
indicated in section 4.1, the lack of access to raw data poses a challenge to implement-
ing standardized pre-processing, feature extraction, and authentication techniques on the
datasets. Consequently, we opted to exclude this dataset from our research analysis.

• Simões et al. [22]: The dataset used in this study comprises 15 autistic persons who
were subjected to a total of 7 training sessions. During the EEG experiment, stimuli were
exhibited in a virtual bedroom setting using the Vizard toolbox. The participants were
tasked with identifying specific things hidden among conventional furniture items. The
dataset records P300 responses, o�ering valuable insights into the cognitive processes of
individuals with autism. This dataset would have been appropriate for investigating the
issue of cross-session variability across subjects in our study. Regrettably, the sample size
for participants was restricted to 15 subjects, which limited the inclusion of this dataset
in our study.

• Huang et al. [86]: The dataset in question has been previously discussed in section 3.3,
where it was noted that it o�ers a highly comprehensive analysis of cross-session evaluation.
We decided to incorporate this dataset into our research and test whether or not we could
replicate the results. However, it came to our attention that the researchers responsible
for this dataset have solely made available the pre-processed data, omitting the raw data.
Consequently, we were compelled to exclude this dataset from our research.

Once the datasets have been collected, the next step is to create an outline of the bench-
marking, which is covered in the following section.

4.2 Workflow

Once the necessary EEG datasets are acquired, the subsequent step establishes a workflow that
presents an abstract view of our envisioned benchmarking tool. This benchmarking framework is
organized into five integral components: datasets, paradigm, evaluation, pipeline, and analysis,
as illustrated in Figure 5.1. We have drawn inspiration for our benchmarking workflow from the
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MOABB (Mother of all BCI benchmarks) [21] work. In their research, Jayaram and Barachant
investigated widely used BCI algorithms using 22 publicly available datasets involving over 250
participants. However, their study did not encompass authentication algorithms. Thus, we have
modified their approach to construct a benchmarking suite tailored for brainwave authentication
systems. The following section provides an overview of all of the modules described depicted in
Figure 5.1. We also provide statistical and visualization tools to help visualize the performance
of authentication techniques.

• Datasets: This module o�ers abstract access to open datasets. It entails downloading
open datasets from the internet and providing e�ective data management.

• Paradigm: The purpose of this module is to conduct pre-processing on the unprocessed
EEG data. Datasets exhibit distinct characteristics based on ERP paradigms such as P300
and N400. Nevertheless, both conditions elicit ERP responses after the individual’s expo-
sure to unexpected stimuli. Consequently, the datasets for the P300 and N400 paradigms
undergo pre-processing using identical parameters.

• Pipeline: This module extracts features from data that has been pre-processed. These
characteristics are extracted in the time and frequency domains and are discussed in detail
in section 5.3.

• Evaluation: The authentication algorithms are developed and utilized for training and
testing the features extracted within the pipeline module. The performance of authenti-
cation modules is assessed through various evaluation schemes, including within-session
and cross-session evaluation. In addition, we will evaluate the e�cacy of authentication
protocols across multiple threat scenarios, including both closed-set and open-set scenarios.

• Analysis: After obtaining the performance metrics, this module o�ers various methods
for conducting statistical analysis on the performance of diverse datasets and algorithms.
The analysis will be conducted utilizing multiple visualization techniques.

It is essential to acknowledge that the execution of the procedures above necessitates the
utilization of the Scikit-Learn [120] pipeline. This pipeline facilitates the execution of various
Python pipelines comprising distinct datasets, paradigms, feature extraction methods, and al-
gorithms. The upcoming chapter 5, will provide comprehensive insights into implementing our
benchmarking tool.
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5

It is imperative to establish a standardized pipeline encompassing the entire process, from pre-
processing the data to extracting relevant features and validating the algorithm’s performance
to promote the comparability and reproducibility of brainwave authentication algorithms [21].
By adopting a common pipeline framework, researchers can ensure consistency and facilitate
the evaluation of di�erent brainwave authentication algorithms. It also enables the researchers
to spend more time on algorithm design and evaluation rather than doing repetitive and error-
prone tasks. The standard pipeline will be implemented as a wrapper around the scikit-learn
[120] pipeline library, which provides various tools for programming machine-learning models.
Moreover, using the scikit-learn library to construct standardized models guarantees credibility,
as the pipeline o�ered by scikit-learn is widely trusted within the machine learning commu-
nity. Adopting a standardized benchmarking framework will contribute to advancing brainwave
authentication techniques, facilitate collaboration, and expedite progress in the field.

5.1 Loading Datasets

The datasets, as discussed in section 4.1.1, o�er a comprehensive and varied collection of data
points, exhibiting notable variations in ERP paradigms, sample size, and subject sessions, are
crucial for our study. The wide range of datasets available presents a compelling prospect for
conducting comprehensive analysis and exploration. However, the heterogeneous nature of the
datasets o�ers di�culty in their utilization and data management, mainly when performing
various analyses and evaluating new algorithms. A Python interface is developed to overcome
these obstacles and enhance the e�ciency of accessing the datasets. This interface aims to
optimize and improve the process for accessing and managing these datasets. The interface
utilizes the MNE Python package’s capabilities, a comprehensive and versatile software package
specifically developed for various tasks such as data preprocessing, source localization, statistical
analysis, and functional connectivity estimation among spatially distributed brain regions [121].
The Python interface employs the MNE package to access and arrange public datasets into
a hierarchical structure consisting of subjects, sessions, and discrete recordings within each
session [21]. The hierarchical structure of data facilitates e�cient data management, enhancing
the ability to navigate and retrieve specific data as required.

Once the datasets are loaded locally, the raw EEG data are transformed into a standard
MNE data format. Standardizing the unprocessed EEG data into raw MNE data is crucial as it
is the foundation for all subsequent steps like pre-processing, feature extraction, and evaluation.
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Figure 5.1: Overview of benchmarking suite [21]

While converting unprocessed brain data into standardized MNE data, the following actions
were followed to ensure consistency across the datasets and to incorporate all pertinent brain
samples into the unprocessed MNE data.

• EEG data can be quantified in micro voltage or on a voltage scale. The choice of measuring
scale is contingent upon the specific EEG devices researchers employ. Upon analyzing our
chosen datasets, it was observed that ERPCORE: N400, Mantegna, and COGBCI: Flanker
exhibited congruity in their measurement scale. However, the BrainInvaders15a dataset
was originally measured on a microvoltage scale. To ensure consistent data scalability
across all four datasets, we rescaled the EEG data of BrainInvaders15a.

• Following the information presented in section 4.1.1, it has been established that the
Mantegna dataset consists of three distinct categories of events, namely congruent, inter-
mediate, and incongruent. According to the research conducted by Mantegna et al., [93],
it was observed that both intermediate and incongruent stimuli evoke the N400 e�ect.
Based on the observation mentioned earlier, we opted to merge the intermediate and in-
congruent stimuli into a unified category, denoted as ’incongruent’ within the context of
our research. This strategy was implemented to bring attention to individual di�erences
in the EEG induced by these stimuli, specifically the N400 ERPs.

• Researchers commonly use the button press method to record time-locked responses to
stimuli to guarantee participants focus on EEG activities and the reliability of recorded
brain responses. The conventional approach entails utilizing online processing, wherein
researchers selectively retain events that elicit accurate responses while disregarding those
that indicate a lack of attention. This methodology e�ectively excludes brain responses
that may be random and do not accurately represent ERPs. The same online processing
method was observed in the BrainInvaders15a, Mantegna, and ERPCORE: N400 datasets
in our study. However, the dataset provided by the COGBCI: Flanker did not adhere to
this particular practice, which necessitated the implementation of o�ine processing. In
this instance, we kept both the congruent and the incongruent time events accompanied
by accurate participant feedback, increasing the dataset’s utility for ERP research.
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(a) Line noise at 50 Hz due to electrical appliances around the EEG devices

(b) Filtered brain signal after applying finite band pass filtering

Figure 5.2: Power Spectral Density of the brain signal before (a) and after (b) applying filtering

5.2 Pre-Processing

After the datasets have been loaded, it is necessary to establish the pre-processing procedures
for EEG data. Various methods exist for cleansing artifacts; however, the procedures must
remain consistent to ensure the validity of comparisons between algorithms or datasets [21]. We
have adhered to established best practices commonly employed in pre-processing methodologies
within brainwave authentication studies [27]. The first stage of EEG data cleaning involves
the elimination of line noise originating from electronic devices present within the experimental
environment during the EEG recording. The application of finite bandpass filtering in the 1 to 50
Hz range is employed for this purpose. The selected range was determined based on eliminating
the 50 Hz line noise and filtering out signals originating from flat channels with frequencies
below 1 Hz. Figure 5.2 (a) depicts the unprocessed raw signal, which exhibits a significant
signal strength at 50 Hz due to line noise. On the other hand, Figure 5.2 (b) illustrates the
consequences of implementing a bandpass filter, revealing a noticeable stabilization in the raw
signals after the data filtration.

The subsequent procedure involves the extraction of epochs from the raw signals. The data is
temporally aligned to a range spanning from -200 to 800 ms relative to the onset of the stimulus.
Baseline correction was applied to each epoch by subtracting the mean baseline period, which
ranged from -200 to 0 ms. Baseline correction is employed to reduce the drifting e�ects of DC
o�sets [26]. Much noise from higher frequencies, such as power lines or very low frequencies
from flat channels, is removed during filtering. Nevertheless, the epoch data would still contain
significant artifacts caused by eye or muscle movements that need to be isolated. In practice,
it is common to employ thresholds approximately equal to 100µV or 150µV to eliminate these
artifacts e�ectively [27]. However, this method also results in the loss of a significant amount
of valuable EEG data. As illustrated in Figure 5.3, thresholds of 100µV and 150µV resulted
in the exclusion of over 80% of the total EEG data for datasets such as BrainInvaders15a and
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Figure 5.3: Actual number of epochs versus the number of cleaned epochs after conducting
epoch rejection with various thresholds. x-axis depicts threshold values in µV whereas y-shows
the the sample count

COGBCI: Flanker. Consequently, we sought to identify an alternative approach to e�ectively
eliminate noisy data while minimizing the loss of valuable EEG data.

We implemented a more sophisticated approach to eliminate noisy data by utilizing the
Autoreject [122] package. This Python package was developed by the original developers of the
MNE package, but it has not yet been incorporated into MNE. The Autoreject method addresses
the issue of manually determining a threshold by implementing cross-validation on the epochs,
allowing for the learning of an optimal rejection threshold specific to each channel. It removes
epochs with greater precision and partially repairs them through interpolation techniques. While
this method saves a substantial amount of data and corrects noisy trials, we observed that its
strategy of performing cross-validation on all user samples could result in data leakage. This
prompted us to reevaluate the optimal threshold for rejecting artifacts. We could not employ
low threshold values, such as 100µV and 150µV, nor use Autoreject.

Consequently, a decision was made to raise the threshold for artifact rejection to 250µV. A
threshold of 250µV does not represent an extreme threshold for rejecting artifacts, as it falls
within a moderate range. The selected value is also based on the consideration that setting a
threshold higher than 250µV would result in the retention of numerous noisy samples in our
pre-processed data. Consequently, the subsequent stages, such as classification, would have
yielded random predictions due to including random noisy samples. Hence, the implementation
of epoch rejection using a peak-to-peak threshold of 250µV was applied in our study. After per-
forming all the aforementioned pre-processing steps, we averaged the Target(unusual stimuli)
and Non-Target(standard stimuli) epochs to check if the ERP signal had been correctly seg-
regated and that the applied pre-processing had successfully minimized other non-task-related
brain responses. The visual representation shown in Figure 5.4 depicts the mean evoked po-

36



Chapter 5. Benchmarking Tool Implementation

Figure 5.4: The Averaged Evoked Potentials exhibit an increase in amplitude ranging from 250
to 400 milliseconds, which can be attributed to the implementation of the oddball paradigm.

tentials seen in the epochs of dataset BrainInvaders15a. The pre-processing steps described
above resulted in a total of 4539, 2193, 2097, and 2618 cleaned epochs for the datasets Brain-
Invaders15a, COG-BCI: Flanker, ERPCORE:N400, and Mantegna, respectively. These epochs
are subsequently employed for feature extraction and the classification process.

5.3 Feature-Extraction

Following the pre-processing of the EEG data, the subsequent stage involves obtaining discrim-
inant characteristics that e�ectively capture and encode the mental activity of a user, utilizing
the refined EEG signal [27]. We surveyed many studies presented for brainwave authentication.
We found that the Autoregressive (AR) model and Power spectral Density (PSD) are some of
the most widely used methods for extracting features in time and frequency domains [20, 12].
Further, AR’s potential to reveal particular inherent characteristics of the EEG signal within a
single channel and PSD’s ability to extract and distinguish the dominant frequency components
[27] make them a promising candidate for our study to extract subject-specific information from
the EEG data. Our research’s feature extraction procedure, which uses the abovementioned
techniques, is outlined below.

• AR Coe�cients: The AR model is fitted using pre-processed epochs, time series data
lasting for 1-second [20]. The coe�cients obtained from this procedure are subsequently
considered as features. The estimation of AR coe�cients can be accomplished by uti-
lizing the Yule-Walker method. The Yule-Walker method is a computational approach
that employs a pth-order AR model to analyze a signal subjected to windowing. This
is accomplished by minimizing the least square error of forward prediction and directly
solving for the AR parameters [46]. Identifying the optimal order for AR modeling is an
intricate task since high orders increase the computational cost and very low order does
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not represent the signal properly [45]. As a result, We extracted AR features in various
orders, such as 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10. However, the most optimum order appears
to be 6, and we have set the default order to 6 in our framework. Acknowledging that the
AR coe�cients are computed individually for each channel within the signal is essential.
Therefore, the total number of AR coe�cients calculated is proportional to the number of
channels utilized for feature extraction. For instance, in the scenario where brain data is
analyzed through the utilization of 32 channels, and all of these channels are employed for
the feature extraction process, it can be observed that the application of a 6th-order AR
model will yield a total of 196 features (32 channels multiplied by an order of 6).

• PSD: The PSD of each epoch is computed across di�erent frequency bands, namely low
(1-10 Hz), – (10-13 Hz), — (13-30 Hz), and “ (30-50 Hz), utilizing the Welch periodogram
algorithm [20]. Welch’s periodogram is used to compute the Discrete Fourier Transform
(DFT) results [27]. In our study, the PSD for each frequency point in a 1-second epoch
is first calculated. Furthermore, in calculating PSD using Welch’s algorithms, we utilized
four-time windows of equal size on a 1-second ERP epoch, with 50% overlap between each
window. Including the time window factor was necessary to separate the genuine frequency
modulation of the EEG caused by attention from any artifacts that the attentional mod-
ulation of ERPs may have induced [123]. We then computed the average PSD within the
specified frequency ranges. This allowed us to determine the average power spectrum of
the low, alpha, beta, and gamma frequency bands. Similar to the AR features, the PSD
features are likewise computed for each channel.

5.4 Classification

Most brainwave authentication techniques fall under the categories of similarity-based or su-
pervised learning-based recognition systems [27]. In our study, we have employed both learning
methods for authentication. Additionally, classification is performed under two evaluation strate-
gies: within-session and cross-session. We undertake a comparative analysis and examination of
the suitability of two evaluation schemes and authentication methodologies for various classifiers
within two threat case scenarios. The subsequent sections delineate the methods for conducting
authentication within the context of similarity or supervised learning techniques.

5.4.1 Supervised based Learning Classification

Authentication is performed by comparing the user’s recorded samples with the user’s enrolled
samples, usually stored during the registration phase, to classify whether the recorded samples
match. The fundamental concept entails acquiring knowledge by utilizing a one-vs-all classifi-
cation methodology employing a binary classification system with two distinct classes. Conse-
quently, a classifier is trained for each subject to be incorporated into the system. Accordingly,
a singular classifier is tasked with recognizing an individual issue [20]. Traditional classifiers
like LDA, SVM, RF, NB, LR, and KNN are utilized in this study to classify the features we
calculated in the feature extraction process. The classification will be performed under the
within-session and cross-session evaluation schemes detailed below.

Within-Session Evaluation

Under the within-session evaluation, the training and testing of the features are done utilizing
the recorded data from a single session. To avoid overfitting and increasing the reliability of
our authentication system, we used RepeatedStratifiedKFold (k=4) to split the single session
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data into training and testing. Stratified cross-validation was chosen because it ensures that the
features from both classes are represented in the train and test data during each fold. Users
with less than four samples were eliminated from the datasets to ensure adequate samples for
training and testing [20]. The total number of repetitions conducted was 10, and the results of
the evaluation metrics obtained for all folds and runs are averaged and reported. Additionally, we
employed feature scaling to prevent overfitting by fitting the StandardScaler 1 on the training
set and applying it to both the train and test sets in every iteration. In the dataset, such
as COGBCI: Flanker, which has multiple sessions across subjects, the evaluation has been
performed across each session. Then, the results from the three sessions have been averaged.

Threat Case Scenarios: The implementation and evaluation of an authentication system
across individual sessions are conducted in the context of two attack scenarios: Close-set sce-
nario is a standard one vs. all approach described earlier in this chapter. Under this approach,
we trained unique classifiers for each user by marking all of their samples as "authenticated"
and all of the samples from all other users as "rejected" [20]. The close-set approach has been
extensively utilized in numerous studies. The current process lacks real-world applicability as
it operates under the assumption that attackers are already part of the system, making it more
straightforward for the model to distinguish genuine users. However, this is only sometimes the
case, as the attacker could be an unknown user attempting to imitate a legitimate user. Hence,
assessing the authentication system’s e�cacy in an open-set scenario is imperative. However,
implementing an open set is more challenging due to the requirement of training the classifier
with known users (enrolled users) and evaluating it with unknown users (attackers who are en-
tirely known to the system). We looked, and unfortunately, no cross-validation technique exists
that meets all of our requirements for training and testing in an open-set environment. Thus, we
adopted a tailored cross-validation approach to test the robustness of our authentication system
in an open-set scenario.

We separated dataset samples into ’authenticated’ and ’attackers’ groups to implement an
open-set scenario. A GroupKFold strategy with a value of K=4 was utilized, wherein ’attackers’
SubjectIDs were employed. The data were divided into training and testing, with 75% attackers
allocated to training and the remaining 25% assigned to testing in each cross-validation. Each
cross-validation iteration constructed a modified training set by randomly selecting 75% of the
’authenticated’ samples and the majority (75%) of the ’attackers’ samples. The testing set, on
the other hand, comprised the remaining ’authenticated’ and ’attackers’ samples. This GroupK-
fold method ensured a non-overlapping distribution of ’attackers’ participants between training
and testing, improving our system’s practical validity in real-world settings. For example, ERP-
CORE: N400 dataset contains 40 individuals. In this scenario, the epochs of a user are assigned
authenticated labels, with 29 being rejected and nine identified as unknown attackers per model
[20]. Nine unknown attackers were absent in the training set. The model is trained and tested
using a train-test split of 75% and 25%, respectively.

Cross-Session Evaluation

The collection of multi-session EEG recordings poses challenges as it becomes more di�cult to
ensure that all participants can replicate the experiment accurately after a designated period
[86]. It is also the underlying cause of the significant scarcity of datasets. In our study, we have a
single multi-session dataset out of all the open datasets, i.e., COGBCI: Flanker, which contains
three recorded sessions at an interval of 7 days. Each session consisted of a total duration of 10
minutes. As a result, we performed the cross-session evaluation on this dataset. Under the cross-
session evaluation strategy, two sessions containing 20 minutes of EEG recording data are used

1
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html/

39

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html/


5.4 Classification

for enrollment or training the classifier. In contrast, the remaining session data is employed
for testing or authentication. This approach ensures the substantial data of model training,
ensuring the reliability of the resultant classifier. The performance of the model is assessed in
a distinct and independent session. A cross-validation strategy is employed to avoid potential
bias in session allocation. We used LeaveOneGroupOut 2 cross-validation method to group
the sessions into training and testing set. The issue of potential overfitting was addressed by
applying feature scaling to the training and testing set. Jayaram and Barachant [21] implemented
a comparable cross-session evaluation approach in their development of MOABB (Mother of
all BCI Benchmark), a benchmarking framework evaluating the performance of di�erent BCI
algorithms on open datasets. Additionally, we excluded users who did not have at least three data
sessions to ensure adequate samples in both the training and testing sets. Just like within-session
evaluation, classification in cross-session is also conducted using both threat case scenarios.

Threat Case Scenarios: This evaluation scheme includes both closed-set and open-set sce-
narios. A single classifier is trained to recognize each user in a close-set method. To meet this
criterion, samples from a specific user across all three sessions are labeled "authenticated," while
samples from all other users are labeled "rejected." The training set consists of data from two
out of three sessions and includes authenticated and adversary samples. During testing, the
remaining session data is utilized. The close-set method is comparable to the one described for
within-session evaluation, except that the model is evaluated using data from multiple sessions
and, therefore, more realistic. However, our study goes beyond the close-set scenario and in-
vestigates the system’s e�cacy when exposed to unknown attackers during authentication in a
cross-session environment.

The open-set scenario follows the same method of LeaveOneGroupOut cross-validation for
grouping session data into training and testing sets. But to accommodate the open-set strategy,
we modify the composition of the attackers within these sets. In each round of the cross-
validation, a random selection is made, based on the SubjectIDs, to include 75% of the attackers
in the training set. The training process excludes the remaining 25% of attackers. In contrast,
the testing set comprises solely the attackers omitted during the training phase while excluding
the attackers on which the model was trained. By employing this methodology, we e�ectively
establish a scenario wherein the model is evaluated using attackers entirely unknown to the
system in a cross-session environment.

5.4.2 Similarity Based Learning

Unlike Supervised learning methods, which entail training a model with other users for decision-
making [26], similarity-based techniques identify a person based on the similarity between the
brain signals acquired during the enrollment phase and those presented during the verification
phase. The similarity between the enrolled and tested samples is calculated using metrics like
Euclidean or cosine distance. Siamese Neural Network is a highly e�ective deep learning (DL)
method for implementing similarity metrics for brainwave authentication, employed already in
studies such as [26, 87, 83]. This type of learning allows for accurate predictions after train-
ing the network with only a few samples [124], overcoming a typical drawback of employing
DL approaches for brainwave authentication. It also avoids the usual shortcoming of super-
vised learning algorithms—retraining—while adding new users to the system, as discussed in
subsection 1.3.

In the context of classification, supervised algorithms frequently require extracting discrim-
inant features from raw epochs to enhance the classification process. In contrast, the Siamese

2
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.LeaveOneGroupOut.
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Figure 5.5: The triplet loss function minimizes the Euclidean distance between the anchor and
positive embeddings while maximizing the distance between the embeddings of two individuals,
precisely the anchor and negative embeddings.

Networks adopt a distinct strategy by circumventing the conventional feature extraction pro-
cedure. Instead, it generates feature embeddings directly from the time series data of epochs
using the CNN method. The epochs are structured in a two-dimensional array, where the rows
correspond to channel indices, and the columns represent discrete-time measurements. SNN
can be trained using various loss functions such as Contrastive loss function and Triplet loss
[125]. Among these, the triplet loss approach is particularly well-suited for biometric recogni-
tion [26]. As a result, our study utilizes Siamese Networks with three CNN branches, which are
trained using a triplet loss function. As explained by Schro� et al. [124] in their study, learning
using the triplet loss function involves the provision of three distinct types of inputs, namely
an anchor, a positive sample (which shares the same identity as the anchor), and a negative
sample (which possesses a di�erent identity than the anchor). Following the completion of this
procedure, the embeddings of individuals of the same identity will exhibit minimal distances,
while those corresponding to distinct individuals will exhibit significant distances. As a result,
once the embeddings are generated, a similarity metric (often Euclidean distance) can be used
to verify or identify them. Figure 5.5 illustrates the learning procedure in Siamese Networks
using the triplet loss function.

The Siamese architecture proposed by Fallahi et al. [26] was implemented in our study.
Therefore, a CNN consisting of five convolution layers was utilized to develop the system. After
each convolutional layer, an average pooling layer was applied to reduce the input vectors’
dimensionality while preserving each brainwave’s unique characteristics. Further, the FaceNet
study [124] demonstrated that minimizing triplet loss through the online mining of semi-hard
triplets is the most e�ective method for quick convergence; consequently, this method of triplet
selection was also utilized in our study. Furthermore, user authentication is performed using
both within-session and cross-session evaluation strategies outlined below.

Within-Session Evaluation

The within-session evaluation in Siamese Neural Network is designed to work well in both
the seen attackers (close-set) and unseen attackers (open-set) scenarios. Both scenarios are
implemented in a similar methodology, except the first involves comparing the identification
sample with all the enrollment samples during testing. In contrast, in the open-set method, the
subject’s sample being tested is compared to an enrollment database that does not include the
subject’s specific brain sample [26]. The comparison is conducted through the computation of
Euclidean distance. Below is a short overview of the evaluation strategy for both threat case
cases.

Threat Case Scenarios: In close-set, the user’s samples were divided into training and testing
sets using stratified cross-validation with k=4. As a result, we omitted users from the datasets
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with less than four samples. The Siamese model is trained on all the users of the dataset. For
example, if the dataset has EEG data of 40 subjects, all 40 subjects get enrolled during the
training process. Training and testing data is scaled using the standard scaler normalization
method. The model learns to generate the brain embeddings, and during verification, the brain
embeddings of each user are compared against the enrollment data of all subjects.

Implementing the open-set approach involves utilizing the GroupKFold cross-validation strat-
egy, with a value of k set to 4. During each round of cross-validation, the grouping is done based
on SubjectID, resulting in a non-overlapping training set consisting of 30 subjects and a testing
set of 10 users if the total number of users in the dataset is 40. This approach tests the model’s
recognition capability against unseen attackers.

Cross-Session Evaluation

The methodology utilized for implementing cross-session evaluation in Siamese Neural Networks
is comparable to the approach employed for the cross-session assessment in supervised learning-
based classification tasks. Therefore, LeaveOneGroupOut cross-validation was used for grouping
the sessions into training and testing sets in each round of cross-validation.

Threat Case Scenarios: A close-set scenario is attained by employing the previously discussed
LeaveOneGroupOut cross-validation technique. In a close set, samples from each subject’s
independent session are compared to their respective enrollment records. In this instance, the
enrollment database comprises the brain samples of all subjects collected during the two sessions.
In the open-set scenario, the session data is partitioned into training and testing sets using the
LeaveOneGroupOut method, where subjects from the enrollment database that are being verified
are excluded. In this case, the enrollment database has two sessions of data, and the evaluation
is based on the remaining session data.

5.4.3 Automated Benchmarking

The benchmarking framework is developed with a primary focus on ensuring user-friendliness.
Our objective was to enable anyone to e�ectively utilize this framework, even without a compre-
hensive understanding of the complex technical intricacies underlying the Python programming
language. Consequently, a user-friendly benchmarking script was developed, e�ciently analyz-
ing a configuration file written in a clear and concise YAML manner. This configuration file is
a control panel for defining various parameters and settings. It automates all the complex tasks
involved in data extraction, pre-processing, feature extraction, and classification, as illustrated
in Figure 5.1. This streamlined approach eliminates the need for users to delve into intricate
programming complexities. Appendix A showcases illustrative examples of such configuration
files, underscoring the simplicity and accessibility of our framework’s implementation.

Examples of configuration files featuring benchmarking pipelines tailored for within-session
and cross-session evaluations on a single dataset are showcased in sections A.1 and A.2, respec-
tively. The examples mentioned above e�ectively illustrate the flexibility and versatility of our
methodology. These examples show that the pipelines can be optimized using default dataset
values. Furthermore, they can be seamlessly configured to accommodate various parameter
variations, spanning dataset specifics, pre-processing techniques, and algorithm selections. We
will explain the significance of each parameter applied on the datasets such as epochs interval,
epochs rejection in chapter 6.2. In chapter 6.2, we will delve into an in-depth exploration of the
significance underlying each parameter employed on the dataset, including interval, and epochs
rejection. This comprehensive analysis will shed light on the crucial role these parameters play
in shaping the outcomes of our study.
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6

Our benchmarking tool underwent a dual-phase evaluation process. The first phase assessed
the tool’s functionality, focusing on its capacity to e�ectively address the challenges outlined in
section 1.2. Subsequently, in section 6.2, we present an in-depth analysis of the evaluation and
outcomes of the benchmarking tool, showcasing its performance across a range of parameters. In
the second phase, the tool was employed to replicate some of the notable benchmarking works in
brainwave authentication. In section 6.3, we delve into the results obtained from this replication
e�ort, comparing them with the original outcomes presented in those brainwave authentication
studies.

6.1 Evaluation Metrics

It is essential to compare the performance of the algorithms with appropriate metrics because it
is seen that a lot of studies present the outcomes of their research on flawed metrics like accuracy.
The accuracy of those studies is shown as high as 99%. However, it is worth noting that the
sample distribution of the training and testing set is usually imbalanced since most researchers
build a single classifier for individual subject. Accordingly, that single user is labeled “authen-
ticated,” the remaining users are marked “rejected” for training and testing the authentication
model. As a result, the model is trained more on the negative samples. This makes it easy
for the model to identify rejected users. Therefore, the high accuracy value represents a biased
assessment of the model’s performance because of the skewness in the training data. Hence,
we choose not to focus on standard metrics like accuracy in our study. Instead, we employed
performance metrics like EER, ROC-Curve as the evaluation metrics for our study. In addition,
we will report FRR at 1%FAR to evaluate our authentication systems usability with enhanced
security measures, given that a low FAR threshold is associated with increased security [20].

6.2 Evaluation and Outcomes of the Benchmarking Tool

Within this section, an extensive array of experiments was meticulously conducted to embark
on an in-depth analysis of the performance exhibited by both SOA algorithms and advanced
deep learning techniques across the four open datasets, leveraging the capabilities of our bench-
marking tool. Our evaluation encompasses within-session and cross-session assessments on all
datasets, spanning known attackers (close-set scenario) and unknown attackers (open-set sce-
nario). By comparing the outcomes derived from our benchmarking tool’s within-session and
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cross-session evaluations, we unveil the influence of EEG variability on the authentication pro-
cess. Additionally, we explore how various factors, including dataset size, epoch duration, and
the utilization of AR and PSD features, contribute to the diverse performance exhibited by
authentication algorithms. Consequently, we rigorously test our tool with varying AR, PSD,
epoch lengths, and dataset sample sizes to comprehensively capture these nuances.

6.2.1 Experiment 1: Within-Session Evaluation across datasets

In the context of our study, each dataset featured at least one distinct session, prompting us
to embark on an extensive evaluation within the confines of individual sessions across all four
datasets. This pivotal phase of experimentation involved subjecting our tool to meticulous
scrutiny, guided by a predetermined set of parameters below.

Datasets: BrainInvaders15a, ERPCORE: N400, Mantegna2019, COG-BCI Flanker

Utilized Parameters:

• Epoch Interval: 1 second

• Epochs Rejection threshold: 250µV

• Features: AR (order=6), PSD

• Classifiers: LDA, SVM, KNN, RF, NB, LR, Siamese

• Evaluation Type: Within-Session Evaluation

• Threat Case: Close-Set, Open-Set

Our tool underwent comprehensive testing for this experiment across various EEG datasets,
specifically BrainInvaders15a, ERPCORE: N400, Mantegna2019, and COG-BCI Flanker. The
data processing parameters included epoch intervals set at 1 second and an epoch rejection
threshold of 250µV epochs. AR coe�cients of order six and PSD were employed for feature
extraction. Several classification algorithms were employed, including LDA, SVM, KNN, RF,
NB, LR, and Siamese Neural Network. The evaluation used a within-session approach, focusing
on close-set and open-set threat cases.

The evaluation outcomes encompass various facets, including identifying the optimal classifier
for di�erent datasets under distinct threat scenarios, namely open-set and close-set conditions.
Additionally, a performance comparison across datasets in both threat scenarios is conducted.
Moreover, a detailed scrutiny of classifiers’ performance in close-set and open-set scenarios is
carried out, coupled with a comparative analysis between SOA and deep learning methodologies.
Finally, the tool is employed to assess the practical applicability of the tested algorithms.

Best Performing Classifier: The outcomes of all of the classifiers applied to the four
datasets in terms of the average EER, as determined by the within-session evaluation under
the close-set(seen) and open-set(unseen) attacker scenarios, are depicted in the Figure 6.1 and
Table 6.1. RF classifier consistently produces the most favorable authentication results, with
EER ranging between 1.3% to 4.3%. The Siamese network is the second-best classifier in terms
of performance. Siamese could have been the most e�ective classifier because it achieves an
EER of just 1% for the BrainInvaders15a, ERPCORE: N400, and Mantegna2019 datasets in
close-set, which is even better than RF. However, the performance of the Siamese model ex-
hibits degradation in an open-set strategy, with the EER reaching a significant increase of up
to 14.30% for the COG-BCI Flanker dataset. The RF algorithm likewise experiences a decline
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in performance when applied to open-set scenarios. However, the observed increase in the EER
is comparatively lower in RF compared to the Siamese algorithm. KNN and NB are the worst
performing classifiers with an EER of more than 10% in both close-set and open-set scenarios
for three datasets such as ERPCORE: N400, COG-BCI Flanker and Mantegna2019. The sub-
sequent analysis examines the performance of datasets, threat case scenarios, and the learning
methodologies utilized by the authentication algorithms. Further, we explore the usability of
our authentication system by comparing the performance of classifiers in terms of the calculated
FRR at 1% of FAR.

Comparison between datasets: BrainInvaders15a performs better than the other
datasets, as seen by the data presented in Figure 6.1. The achieved EER for BrainInvaders15a
demonstrates a notable decrease across all classifiers, except the LDA classifier, when used in
the open-set scenario. In this case, the EER of BrainInvaders15a is higher than that of datasets
like COG-BCI Flanker and ERPCORE: N400. It is worth mentioning that BrainInvaders15a
successfully attained an EER of less than 2% for many classifiers, including LDA, LR, RF, SVM
and Siamese in close-set. The superior performance of BrainInvaders15a can also be ascribed
to the dataset’s larger sample size compared to the other datasets. As mentioned in section
5.2, BrainInvaders15a has 4539 samples as compared to 2193 samples of COG-BCI flanker, 2097
samples of ERPCORE: N400, and 2618 samples of Mantegna2019. The higher number of brain
samples allows the increased availability of data, which allows for more robust training of the
machine learning model [20]. In section 6.2.7, we will thoroughly examine the influence of vary-
ing brain sample sizes on the performance of classifiers. Furthermore, based on the analysis of
the EER in Figure 6.1 and FRR at a FAR of 1%, as presented in Table 6.1, it can be observed
that the ERPCORE: N400 dataset exhibits the second highest level of performance. This is
followed by the COG-BCI flanker dataset and the Mantegna2019 dataset.

Table 6.1: Average FRR at 1% of FAR for the four datasets in a within-session evaluation

scheme, comparing classifiers and threat case scenarios. The values in the table are shown

in percentages.

Dataset Scenario LDA SVM LR RF KNN NB Siamese

BrainInvadeers15a Close-Set 1.04 3.61 0.98 0.89 23.46 40.54 0.05

BrainInvaders15a Open-Set 43.50 9.97 20.68 2.54 33.96 36.23 2.07

ERPCORE:N400 Close-Set 13.72 16.50 9.19 1.84 50.76 70.55 0.21

ERPCORE:N400 Open-Set 41.25 21.90 32.02 4.56 55.34 62.84 6.09

Mantegna2019 Close-Set 20.52 25.90 15.85 6.89 60.99 86.13 0.75

Mantegna2019 Open-Set 46.51 33.43 37.38 11.34 66.49 81.92 27.04

COG:BCI Flanker Close-Set 14.05 19.19 14.05 13.33 32.88 59.56 45.07

COG:BCI Flanker Open-Set 28.64 19.46 28.80 13.87 43.25 47.17 53.60

Comparison between close-set and open-set scenarios: It was hypothesized that
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(a) Mean EER across all subjects in Close-Set

(b) Mean EER across all subjects in Open-set

Figure 6.1: Comparative Analysis of the four data sets performance using various classifiers and
attack scenarios based on mean EER across subjects.
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the performance of the authentication system would deteriorate when subjected to evaluation
in an open-set situation. The findings from our analysis substantiated our initial concerns. As
shown in Figure 6.1, there is an observed increase in EER ranging from 0.2-5.2% for most of the
classifiers. A similar trend can be seen from Table 6.1 where FRR at % FAR exhibits an increase
ranging from 0.6 to 43.2%. Although almost all the classifiers experience performance degra-
dation when comparing their results in close-set and open-set settings, the most significantly
impacted classifiers are LDA and LR. A notable performance decline is observed for classifier
LDA where EER for dataset BrainInvaders15a increased from a mere 1.13% in closed-set to
6.3% in open-set, a significant 6-fold increase.

The outcomes of the close-set and open-set may be influenced by the di�ering sizes of the
spaces occupied by the potential attackers in each scenario [20] as outlined in section 5.4.1, the
evaluation strategy of close-set requires training the authentication model with N-1 attackers
where N represents the total number of users. In contrast, the classifiers in an open-set scenario
learn from approximately three-quarters of the N-1 attackers. Consequently, in close-set settings,
the attacker spaces are more significant than in open-set, thereby enabling more e�ective training
of machine learning models in close-set. Additionally, in close-set environments, the system is
designed to optimize its ability to discern a particular group of pre-identified users(enrolled
users). This approach produces favorable results due to the limited variability in the training
set. However, in the context of open-set scenarios, the model is required to e�ectively address the
existence of unseen users, which introduces the additional complexity of accurately identifying
authorized and unauthorized users.

Comparison between traditional and deep learning methods: SOA machine
learning algorithms such as LDA, SVM, LR, RF, KNN, and NB have always been widely utilized
in EEG-based authentication systems. These algorithms provide good results when the number
of classes is known and fixed. However, the performance of these algorithms tends to decline
when tested with smaller data samples. They also necessitate extracting discriminant features
from the raw EEG data. To address these problems, researchers started focusing on deep learning
methods such as Siamese Networks, which learn directly from the time series EEG data, removing
the overhead of the feature extraction process. Moreover, they do not require retraining while
adding new users to the system. As a result, Siamese networks have achieved remarkable success
in biometrics-based authentication studies such as face recognition [126, 124, 127] and Brainwave
authentication [26, 83].

The results obtained in our study have also demonstrated Siamese networks as one of the
best-performing algorithms among all the authentication algorithms. The ROC curves of the four
datasets are presented in Figure 6.2, showcasing the operational capabilities of the traditional
and deep learning authentication models in closed-set and open-set settings. The AUC under
ROC-Curve represents a single value representing the system’s ability to di�erentiate between
genuine users and imposters [20]. A higher AUC implies an improved performance as it indicates
the system has a higher TPR value and a lower FPR. The Siamese Networks have a higher AUC
score than SOA classifiers in close-set and open-set scenarios across most datasets. However, it
is worth noting that in the COG-BCI flanker dataset, classifiers like LDA, LR, SVM, and RF
outperform the Siamese Networks regarding the AUC score for both threat cases. The findings
depicted in Figure 6.1 EER Plots regarding the average EER align with the earlier observation.
The results suggest that Siamese networks outperform other classifiers, consistently achieving
the lowest EERs across three of the four datasets, specifically BrainInvaders15a, ERPCORE:
N400, and Mantegna2019 in the close-set scenario.

Usability: FAR is a crucial metric when assessing the overall security of the authentication
system because it represents how many times the system allows an unauthorized user to authen-
ticate. Therefore, the FAR threshold for most authentication systems is generally set low. The
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(a) ROC: BrainInvaders15a Close-Set

(b) ROC: ERPCORE N400 Close-Set

(c) ROC: Mantegna 2019 Close-Set

(d) ROC: COGBCI Flanker Close-Set

(e) ROC: BrainInvaders15a Open-Set

(f) ROC: ERPCORE N400 Open-Set

(g) ROC: Mantegna 2019 Open-Set

(h) ROC: COGBCI Flanker Open-Set

Figure 6.2: Comparative analysis of ROC-Curves for all 4 datasets in within-session evaluation
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FAR’s relevance spans across a spectrum, with a lower threshold of 1% for applications with
lower security requirements and an even more stringent point of 0.00001% for applications neces-
sitating the highest levels of security [128]. On the other hand, FRR quantifies the e�ectiveness
of the authentication system in terms of its usability. A low FRR indicates that authentic users
are not experiencing rejections. It is essential to strike a balance between the two metrics as
each increases at the expense of the other. Consequently, we calculated FRR and FAR at 1%
for each dataset in close-set and open-set. By assessing the system’s performance at this par-
ticular threshold of FAR and FRR, we can gain insights into the system’s e�cacy in real-world
situations. For example, a higher value of FRR at 1% FAR implies that genuine users are being
denied access more frequently, adversely a�ecting the overall user experience. Conversely, a low
FRR and FAR of 1% indicate that the system e�ectively identifies and accepts genuine users
while upholding an acceptable level of security. Therefore, an e�cient authentication system
should always have a low FRR at 1% FAR.

The findings in Table 6.1 indicate that the most optimal setup is achieved when employing
Siamese Networks on the dataset BrainInvaders15a for authentication. In the close-set scenario,
Siamese Networks achieved FRR of just 0.05% at a threshold of 1% FAR. The authentication
system exhibits notable usability and robustness even in open-set scenarios, as evidenced by
an FRR of just 2.07% at 1% FAR. This suggests that the system remains e�ective even when
faced with previously unseen attackers. RF has demonstrated its e�ectiveness as the second-
highest-performing classifier in multiple instances. Specifically, it achieved the best FRR at a
FAR of 1% in four di�erent scenarios: ERPCORE: N400 (open-set), Mantegna2019 (open-set),
and COG-BCI Flanker (close and open-set).

6.2.2 Experiment 2: Cross-Session Evaluation across Multi-Session Datasets

During this phase of experimentation, our tool underwent cross-evaluation using multi-session
datasets, employing the predefined parameters outlined below.

Dataset: COG-BCI Flanker

Utilized Parameters:

• Epoch Interval: 1 second

• Epochs Rejection threshold: 250µV

• Features: AR (order=6), PSD

• Classifiers: LDA, SVM, KNN, RF, NB, LR, Siamese

• Evaluation Type: Cross-Session Evaluation

• Threat Case: Close-Set, Open-Set

Our tool is exclusively assessed using the COG-BCI dataset due to its unique provision of
multiple EEG data sessions. The pre-processing procedures, parameters for feature extraction,
the array of employed classifiers, and the considered threat cases mirror those of the initial
Experiment 1 detailed in section 6.2.1. The sole distinction lies in the evaluation mode, which
shifts to a cross-session assessment.

Results of Experiment 2: Figures 6.3 and 6.4 illustrate the outcomes of all classifiers
applied to COG-BCI Flanker in terms of the mean EER and ROC-Curve, as confined by the
cross-session evaluation. The performance of all the classifiers in both the close-set and open-set
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Figure 6.3: Average EER for cross-session evaluation on COG-BCI Flanker dataset, comparing
performance across di�erent authentication algorithms.

Figure 6.4: Performance comparison of the dataset COG-BCI Flanker in cross-session evaluation
scheme. ROC Curves are depicted for di�erent classifiers in close-set attacker scenario.
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scenarios was observed to be comparable in cross-session. Therefore, the findings shown in both
figures pertain to the close-set scenario. The attained EER for the SOA classifiers, namely LR
and LDA, is identical. Both classifiers have also achieved the least EER among all the classi-
fiers. However, LR demonstrates superior performance compared to LDA when evaluating its
performance based on the AUC metric. This can be observed in 6.4, where the ROC curves
indicate that LR has attained a slightly higher AUC value. The Siamese Network demonstrates
the third highest classification performance, achieving an EER of 19.3%. Although RF exhib-
ited outstanding performance in within-session evaluation, surpassing all classical classifiers and
Siamese Networks, its performance in cross-session evaluation is unsatisfactory. RF is the fourth
best-performing classifier, exhibiting a notable EER of 26.9%. Additionally, the results of the
cross-session evaluation support the conclusions drawn from the within-session assessment, indi-
cating that the NB and KNN classifiers demonstrate the highest EER values compared to other
classifiers. This finding suggests the need for additional exploration into these two classifiers’
limitations and possible enhancements.

The results from the cross-session examination of the COG-BCI Flanker dataset have yielded
insights into notable discoveries. The optimal outcomes were not attained during the cross-
session. In addition to the EEG variability and unpredictability resulting from the time duration
between the enrollment and authentication process, several other factors may have influenced the
outcomes in our cross-session settings. These factors include electrode resetting across sessions,
variations in human brain states, and template ageing [87]. Moreover, the performance of SOA
algorithms has been impacting more prominently in cross-session evaluation than in Siamese
Networks. The results of our cross-session setting align with Arnau-González et al. [129] work,
which utilized three publicly available datasets to investigate user identification in both single-
session and multi-session scenarios. Similar to our study, Arnau-González et al. also performed
feature extraction by computing PSD across ◊, ”, –, —, and “ bands and utilized classifiers
such as SVM, KNN, Multilayer Perceptron (MLP), and AdaBoost for building the identification
models. The researchers opted to use accuracy as the performance metric in their investigation.
The classifiers exhibited much-improved performance in the single session setup, with accuracy
rates over 90% for various classifiers across all datasets. Nevertheless, the system’s performance
showed a notable decline during the evaluation conducted under a cross-session scenario. The
accuracy reached in cross-session evaluation was 79%, a substantial decrease compared to the
best accuracy of 99% gained in single-session evaluation. The consistent findings between our
cross-session study and the work of Arnau-González et al. emphasize the need to consider
temporal factors when creating authentication models for practical deployment.

6.2.3 Experiment 3: Comparative Evaluation of Within-Session and Cross-

Session Approaches

One of the main objectives of this thesis is to comprehensively study the impact of EEG vari-
ability across single and multi-session settings. We utilized the capabilities of our benchmarking
tool to conduct thorough evaluations of various authentication models in both within-session
and cross-session scenarios, as detailed in the preceding sections. The results are presented in
sections 6.2.1 and 6.2.2 respectively. These evaluations have yielded significant insights into
the performance of our classifiers in di�erent conditions and have illuminated the di�culties
associated with temporal variations in EEG signals.

Our tool is employed in this experiment to evaluate the COG-BCI Flanker dataset, both
within-session and cross-session. Subsequently, the outcomes of these two evaluation schemes
are compared to assess the influence of single-session and multi-session setups on the perfor-
mance of the authentication algorithms.
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Datasets: COG-BCI Flanker

Utilized Parameters:

• Epoch Interval: 1 second

• Epochs Rejection threshold: 250µV

• Features: AR (order=6), PSD

• Classifiers: LDA, SVM, KNN, RF, NB, LR, Siamese

• Evaluation Type: Within-Session Evaluation, Cross-Session Evaluation

• Threat Case: Close-Set

Table 6.2: Average Performance of classifiers on the COG-BCI Flanker [92] dataset, com-

paring Within-Session and Cross-Session Evaluation

Metric LDA SVM LR RF KNN NB Siamese
Within-Session

%EER 2.28 ± 2.55 5.25 ± 3.50 2.92 ± 3.28 2.75 ± 3.28 10.38 ± 6.92 12.02 ± 7.24 7.79 ± 6.54

FRR at 1% FAR 14.46 19.19 14.05 13.33 32.88 59.56 45.07
Cross-Session

%EER 18.32 ± 11.47 21.58 ± 13.18 18.28 ± 11.47 26.91 ± 13.67 37.47 ± 10.34 35.15 ± 13.80 19.30 ± 17.49

FRR at 1% FAR 72.37 68.74 64.15 73.43 84.66 96.83 67.53

Results of Experiment 3: According to Table 6.2, the results of the multi-session (cross-
session) evaluation are significantly poorer than the single-session (within-session) evaluation for
dataset COG-BCI Flanker. A significant decrease in the performance of RF can be observed,
which was identified as the overall most e�cient classifier across all datasets for within-session
evaluation, as discussed in section 6.2.1. The cross-session EER experiences a substantial in-
crease of 878.5% (from 2.75% to 26.91%), and FRR at 1% FAR raises to 450.8% (from 13.33%
to 73.43%). LR and LDA have comparable EER and FRR at 1% FAR in within-session and
cross-session schemes. These SOA algorithms experience performance degradation as EER in-
creases from 2.28% to 18.32% for LDA and 2.92% to 18.28% for LR. Furthermore, the Siamese
Networks likewise exhibit an increased trend in EER. However, the rise in the EER was only
147.7%(from 7.79% to 19.30%), indicating that the observed decline in performance was less
pronounced in Siamese Networks than in SOA classifiers.

The Siamese Networks, a deep learning technique, exhibited a higher level of resilience in both
within-session and cross-session evaluations, which is a favorable finding. Although the Siamese
Networks also showed an elevation in EER, the magnitude of this increase was noticeably less
significant compared to SOA classifiers. As mentioned above, the observation implies that
Siamese Networks can learn underlying feature representations and capture similarities among
EEG samples, hence exhibiting enhanced resilience to temporal variations in EEG signals. The
e�cacy of Siamese Networks in addressing cross-session evaluations underscores the potential of
deep learning techniques in mitigating some constraints encountered by SOA classifiers, thereby
presenting encouraging prospects for further investigation in EEG-based authentication systems.
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6.2.4 Experiment 4: Evaluation of Time Domain Features

Feature extraction plays a crucial role in developing a resilient EEG-based authentication sys-
tem. In our study, we extracted features in the time domain by estimating the AR coe�cients.
These features were passed as input to the SOA classifiers for training and testing. As a result,
we evaluate our tool on various orders of AR coe�cients. These feature sets included AR coef-
ficients (order=1,2,3,4,5,6,7,8,9,10).

Datasets: BrainInvaders15a, ERPCORE: N400, Mantegna2019, COG-BCI Flanker

Utilized Parameters:

• Epoch Interval: 1 second

• Epochs Rejection threshold: 250µV

• Features: AR (order=1,2,3,4,5,6,7,8,9,10)

• Classifiers: LDA, SVM, KNN, RF, NB, LR

• Evaluation Type: Within-Session Evaluation

• Threat Case: Close-Set

The aforementioned parameters were applied to subject our tool to a rigorous evaluation
across a diverse set of datasets, namely BrainInvaders15a, ERPCORE: N400, Mantegna2019,
and COG-BCI Flanker. The preprocessing procedures involved segmenting the EEG data into
epochs of 1-second intervals and applying a threshold of 250 V for the rejection of epochs with
artifacts. For feature extraction, exclusively AR coe�cients with orders ranging from 1 to 10
were utilized. The evaluation exclusively employed SOA classification algorithms, including
LDA, SVM, KNN, RF, NB, and LR. The assessment was conducted using a Within-Session
approach, with particular emphasis on the Close-Set scenario. The outcomes of this experiment
was discussed below.

Results of Experiment 4: Figure 6.5 portrays the performance of traditional classifiers on
the four datasets, showcasing the impact of varied AR orders. The optimal performance is evi-
dent for the BrainInvaders15a, ERPCORE: N400, and Mantegna2019 datasets when employing
the lowest AR order, 1. Remarkably, the analyzed datasets demonstrate an increase in EER as
the AR order increases. Notably, the COG-BCI Flanker dataset exhibits an EER increase from
orders 1 to 3, followed by a consistent decline from orders 3 to 10. However, the data presented
underscores a noticeable improvement in classifier e�ciency at an AR order of 6. The LDA
classifier emerges with the lowest EER across varying AR orders among the classifiers tested.

6.2.5 Experiment 5: Evaluation of Frequency Domain Features

Within our study, we harnessed frequency domain characteristics by employing Power PSD as
a feature extraction technique. Through this specific experiment, we aim to assess how the uti-
lization of extracted PSD features influences the performance of the authentication algorithms
across the complete spectrum of the four selected datasets. The evaluation setup in this exper-
iment remains consistent with that of experiment 4 6.2.4, except for the distinct modification
that solely PSD features were extracted and employed for the training and testing of classifiers.

Datasets: BrainInvaders15a, ERPCORE: N400, Mantegna2019, COG-BCI Flanker
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(a) E�ect of AR features with orders (1 to 10) on
performance of the dataset BrainInvaders15a

(b) E�ect of AR features with orders (1 to 10) on
performance of the dataset COGBCI Flanker

(c) E�ect of AR features with orders (1 to 10) on
performance of the dataset ERPCORE: N400

(d) E�ect of AR features with orders (1 to 10) on
performance of the dataset Mantegna2019

Figure 6.5: Impact of Auto Regressive(AR) Features on the performance of the datasets. Figures
(a), (b), (c) and (d) depicts the change in the EER of the traditional classifiers for the datasets
BrainInvaders51a, COG-BCI Flanker, ERPCORE: N400 and Mantegna2019 respectively.
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Utilized Parameters:

• Epoch Interval: 1 second

• Epochs Rejection threshold: 250µV

• Features: PSD

• Classifiers: LDA, SVM, KNN, RF, NB, LR

• Evaluation Type: Within-Session Evaluation

• Threat Case: Close-Set

Results of Experiment 5: Illustrated in Figure 6.6, the classifiers’ performance notably
improved when solely PSD features were employed, surpassing the evaluation conducted using
only AR features. The data in Figure 6.6 underscores that the EER remains consistently below
16% across all classifiers and datasets. Particularly remarkable is the robust performance of the
RF classifier, achieving an EER of less than 5% across each dataset. However, it is worth noting
that NB exhibited a consistent decline in performance across all datasets when utilizing PSD
features.

Interestingly, the results from Experiment 4, as depicted in Figure 6.5, revealed that uti-
lizing solely AR features led to significantly elevated EER values. Specific classifiers like KNN
exhibited EER values as high as 45% on datasets such as ERPCORE: N400 and Mantegna2019.
In contrast, the EER obtained using only PSD features did not exceed 16%. This comparison
accentuates a distinct enhancement when employing features extracted from the frequency do-
main. This discrepancy suggests that frequency domain features are adept at capturing unique
EEG patterns among individuals, underscoring their greater e�cacy than time domain features.

6.2.6 Experiment 6: Evaluation of the combination of Time and Frequency

Domain Features

We observed in Experiment 5 and 6 about the distinctive performance trajectories of authen-
tication systems by solely employing AR and PSD features, respectively. Building upon this
investigative foundation, we delve into Experiment 7, where we comprehensively explore the
impact of integrating both AR and PSD features within our authentication process.

Datasets: BrainInvaders15a, ERPCORE: N400, Mantegna2019, COG-BCI Flanker

Utilized Parameters:

• Epoch Interval: 1 second

• Epochs Rejection threshold: 250µV

• Features: AR (order=1,2,3,4,5,6,7,8,9,10), PSD

• Classifiers: LDA, SVM, KNN, RF, NB, LR

• Evaluation Type: Within-Session Evaluation

• Threat Case: Close-Set
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(a) E�ect of PSD features on the performance of the
dataset BrainInvaders15a

(b) E�ect of PSD features on the performance of the
dataset COG-BCI Flanker

(c) E�ect of PSD features on the performance of the
dataset ERPCORE: N400

(d) E�ect of PSD features on the performance of the
dataset Mantegna2019

Figure 6.6: Impact of Power Spectral Density (PSD) Features on the performance of the datasets.
Figures (a), (b), (c), and (d) depict the change in the EER of the traditional classifiers for the
datasets BrainInvaders51a, COG-BCI Flanker, ERPCORE: N400 and Mantegna2019, respec-
tively.

56



Chapter 6. Evaluation and Results

(a) E�ect of the combination of AR (from order 1 to
10) and PSD features on the performance of the

dataset BrainInvaders15a

(b) E�ect of the combination of AR (from order 1 to
10) and PSD features on the performance of the

dataset COG-BCI Flanker

(c) E�ect of the combination of AR (from order 1 to
10) and PSD features on the performance of the

dataset ERPCORE: N400

(d) E�ect of the combination of AR (from order 1 to
10) and PSD features on the performance of the

dataset Mategna2019

Figure 6.7: The influence of combining PSD and AR features with orders ranging from 1 to
10 is assessed in terms of the datasets’ performance. The corresponding changes in the EER
of traditional classifiers for the BrainInvaders51a, COG-BCI Flanker, ERPCORE: N400, and
Mantegna2019 datasets are illustrated in Figures (a), (b), (c), and (d) respectively.

Results of Experiment 6: While the performance of the classifiers improved using PSD
features, the best performance across all datasets is achieved using a combination of AR and
PSD features, as depicted in Figure 6.7. This observation highlights the significant benefits of
incorporating both separate and complementary features of EEG signal representation. The in-
tegration of temporal dynamics collected by AR features and the frequency-specific information
provided by PSD features enhances the robustness and comprehensiveness of the authentication
systems. This integration o�ers classifiers with a broader and more varied range of character-
istics, which is crucial for understanding the intricacies present in EEG signals among various
subjects, sessions, and tasks.

6.2.7 Experiment 7: Evaluation of the Tool with Varied Dataset Sizes

The sample size of the dataset passed to the model for learning plays a crucial role in impact-
ing the overall performance of the authentication system. As mentioned in section 5.2, artifact
rejection during the pre-processing stage involves the peak-to-peak rejection approach. The
observation was made that varying rejection thresholds impact the quantity of the dataset that
triggers an alert. Consequently, this experiment will evaluate the influence of various rejection
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criteria on the e�cacy of the best-performing SOA classifier, which is RF. The evaluation will
be performed on the four datasets using the within-session evaluation scheme within the context
of the close-set scenario.

Datasets: BrainInvaders15a, ERPCORE: N400, Mantegna2019, COG-BCI Flanker

Utilized Parameters:

• Epoch Interval: 1 second

• Epochs Rejection threshold: 150µV, 200µV, 250µV, 300µV, 350µV

• Features: AR, PSD

• Classifiers: RF

• Evaluation Type: Within-Session Evaluation

• Threat Case: Close-Set

Results of Experiment 7: Figure 6.8 (a) and (b) presents the obtained EER and FRR
at 1% FAR with di�erent rejection thresholds. The results indicate a drop in the EER for the
ERPCORE: N400 dataset as the rejection threshold increased from 100µV to 150µV. There was
a modest increase in EER at 200µV, followed by a continuous decrease in the EER from 200µV
to 350µV thresholds. Similarly, a constant reduction in FRR at a FAR of 1% was observed
as the rejection threshold increased from 100µV to 350µV. This suggests a positive correlation
between the number of samples and the classifier’s performance on ERPCORE: N400, indicating
that the classifier’s performance improves as the number of samples increases. Nevertheless, this
assumption is not universally applicable to all datasets. In the case of the Mantegna2019 dataset,
we noticed a notable increase in the EER as the rejection threshold was raised from 150µV to
350µV. However, a slight improvement was observed at the 150µV threshold, where the EER
decreased by 3.66% (from 3.02% to 2.92%) and FRR at 1% FAR drops by 29.84% (from 8.51%
to 5.97%). This implies that the overall performance of the Mantegna2019 dataset deteriorated
as the sample size increased. As the thresholds governing the rejection of epochs are raised, we
observe a consistent pattern of improvement and decline in the performance of the RF classifier
across the ERPCORE: N400 and Mantegna2019 datasets. However, the COG-BCI Flanker
dataset exhibits a distinct pattern in the version of the EER metric, displaying a continuous
fluctuation as the thresholds are incrementally increased. Furthermore, it is noteworthy that the
dataset BrainInvaders15a demonstrates a minimal shift in EER and FRR at 1% FAR despite
variations in the thresholds for epochs rejection. This observation underlines the dataset’s
robustness to changes in the rejection threshold, suggesting a consistent classifier performance
under di�erent rejection conditions.

Based on the findings mentioned above, it is crucial to recognize that implementing a prede-
termined threshold for rejection may introduce limitations to the suitability of our methodology,
given the size of EEG datasets can vary among di�erent types of headsets and experimental
conditions. To enhance the flexibility of our framework, we have devised a design that allows
researchers to specify their threshold for rejecting epochs. This approach allows for increased
customization and adaptation to the unique characteristics of di�erent experimental setups and
datasets, thereby enhancing the applicability and robustness of the system in diverse EEG au-
thentication scenarios.
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(a) E�ect of rejection thresholds on EER with RF
classification

(b) E�ect of rejection thresholds on FRR at 1% FAR
with RF classification

Figure 6.8: Impact of applying epochs rejection on the performance of the four datasets. Figures
(a) and (b) show the EER and FRR at 1% FAR for classifier RF.

(a) E�ect of epochs duration on EER with RF
classification

(b) E�ect of epochs duration on FRR at 1% FAR
with RF classification

Figure 6.9: Impact of epoch duration on classification scores and epoch rejection on the four
datasets. Figures (a) and (b) shows the EER and FRR at 1% FAR for classifier RF.
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6.2.8 Experiment 8: Evaluating of the Tool with Varied Epoch Duration

In this experiment, we evaluate our tool to analyze the e�ect of di�erent epoch durations on the
performance of our authentication system using an RF classifier and the same pre-processing and
feature extraction pipeline. The duration of the epochs was meticulously arranged, encompass-
ing a range of 1.0 seconds, 1.2 seconds, 1.4 seconds, 1.6 seconds, 1.8 seconds, and 2.0 seconds.
Each epoch was preceded by a 200-millisecond interval before the ERP event. The selection of
these specific time intervals enables us to thoroughly investigate the impact of various temporal
windows surrounding the ERP occurrence on the system’s classification performance. Through
examining several epochs, our objective is to get vital knowledge regarding the ideal duration
that e�ectively enhances the accuracy and resilience of the authentication system in real-world
scenarios.

Datasets: BrainInvaders15a, ERPCORE: N400, Mantegna2019, COG-BCI Flanker

Utilized Parameters:

• Epoch Interval: 1 seconds, 1.2 seconds, 1.4 seconds, 1.6 seconds, 1.8 seconds, 2 seconds

• Epochs Rejection threshold: 250µV

• Features: AR, PSD

• Classifiers: RF

• Evaluation Type: Within-Session Evaluation

• Threat Case: Close-Set

Results of Experiment 8: As shown in Figure 6.9 (a) and (b), the duration of epoch
a�ects the performance of the classifier RF. The figure illustrates a discernible trend wherein an
extension in the epoch duration from 1 second to 2 seconds correlates with a substantial reduction
in EER and FRR at 1% FAR, particularly evident in the case of Mantegna2019 dataset. Notably,
for the Mantegna2019 dataset, the EER experiences a noteworthy drop of 38.74% (from 2.87%
to 1.76%) and the FRR at % also witnesses a significant decline of 57.24% (from 5.81% to 2.48%)
as the epochs duration increases from 1 to 1.6 seconds. The dataset BrainInvaders15a displayed
consistent fluctuations in its EER as the epochs’ duration was extended. Notably, the EER
exhibited oscillations of both increments and decrements, occurring within intervals as short as
0.2 seconds in epochs length. A marginal alteration in performance is noted for the ERPCORE:
N400 and COG-BCI Flanker datasets, as evidenced by the nearly consistent EER and FRR
values at a 1% FAR over increasing epochs duration.

The variability in datasets performance resulting from varied epoch durations highlights the
importance of adaptability within our system. Acknowledging the heterogeneous characteris-
tics of EEG data obtained from various types of headsets and experimental configurations, we
have developed our framework to allow the user to customize epoch durations. The option to
adjust the duration of epochs will enable researchers to customize the time intervals to align
with the unique attributes of their data, hence augmenting the flexibility and resilience of our
authentication system.

60



Chapter 6. Evaluation and Results

6.3 Evaluation of the Authentication Approaches Utilizing the

Tool

We formulated our benchmarking framework by aligning with established conventions in data
pre-processing, feature extraction, and classification, aiming to encapsulate the most respected
and influential techniques in brainwave authentication. For instance, our decision to apply raw
EEG data filtering and artifact removal through peak-to-peak thresholds during data cleaning
is grounded in recognized best practices (as detailed in section 2.3). Furthermore, our choice to
utilize AR coe�cients and PSD for feature extraction, addressing both temporal and frequency
domains, mirrors prevalent and validated approaches employed in brainwave authentication, as
highlighted in section 2.4. We aimed to construct a benchmarking tool that embodies current
state-of-the-art practices and techniques by integrating these well-established methodologies. In
subsequent testing phases, we subjected our benchmarking tool to comprehensive evaluations,
employing a selection of the most commonly utilized machine learning algorithms in brainwave
authentication studies, as outlined in section 2.5. These algorithms included LDA, SVM, RF,
KNN, NB, and LR. Furthermore, we incorporated advanced deep learning techniques such as
Siamese Neural Networks, ensuring that our framework provides comprehensiveness and adapt-
ability to embrace advanced methodologies.

We have structured our data processing, feature extraction, and classification approach by
drawing inspiration from recent benchmarking studies in brainwave authentication. This se-
lected framework was influenced by the methodologies employed in two prominent studies. The
first of these studies, conducted by Arias-Cabarcos et al. in 2023 [20], involved benchmarking
brainwave authentication models utilizing EEG data collected from 56 participants through the
Emotiv+ consumer device. This data collection process encompassed participants engaging in
five distinct ERP tasks, which generated ERP e�ects through P300 and N400 paradigms. The
data preprocessing in this study entailed bandpass filtering within the range of 1 to 50 Hz, base-
line correction, and epoch rejection set at 150 µV. The epochs were extracted from raw EEG
signals with a duration of 1 second, encompassing 100 milliseconds before and 900 milliseconds
after the event. Discriminant features were then extracted from both the time and frequency
domains, accomplished by estimating AR coe�cients and computing the Power Spectrum (PS)
of low, –, —, and “ waves. In terms of authentication, the study employed six state-of-the-art
algorithms—LR, SVM, LDA, KNN, GNB, and RF—while considering both close-set and open-
set attack scenarios. Performance comparison was carried out through metrics such as EER,
ROC curves, and FRR and FAR at 1%. The study achieved favorable outcomes, including an
EER of 7.2% utilizing the SVM classifier. These achievements are particularly noteworthy given
that the EEG data originated from a consumer device, which typically exhibits a lower signal-
to-noise ratio than medical-grade EEG devices. Furthermore, within this study, the researchers
extended their evaluation to include an assessment of their authentication methodology using
high-quality open brainwave data obtained from a medical-grade headset, introducing a compar-
ative analysis of discrepancies. For this purpose, they employed the ERP CORE (Compendium
of Open Resources and Experiments) dataset [85]. This is the same dataset that we have also
operated in our study. Notably, they replicated the identical preprocessing, feature extraction,
and classification processes on the ERP CORE dataset as those applied to their consumer de-
vice data. Significantly, the performance of the classifiers experienced a marked enhancement
in the ERP CORE dataset. This observation underscores the pivotal role of data quality in
constructing robust brainwave authentication systems. The RF classifier demonstrated excep-
tional performance on the ERP CORE dataset, with an EER of only 1.04%. Additionally, it
achieved an FRR of 1% and a FAR of 1.1%. This underscores the critical significance of utilizing
high-quality data when developing brainwave authentication systems for enhanced performance.
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Another study that significantly influenced the development of our benchmarking framework
was undertaken by Fallahi et al. [26]. As previously discussed in section 3.2, this study has sig-
nificantly influenced our approach to implementing the Siamese Neural Network for our research.
Notably, Fallahi et al. employed high-quality medical-grade brainwave datasets, including ERP
CORE dataset [85] and BrainInvaders15a [91]. The focus of their study revolved around the use
of biometric identification and verification techniques, explicitly examining the measurement of
similarity between registered brain samples and those obtained during the verification process.
The research presented a notable solution to the common challenge of retraining state-of-the-art
algorithms when new users are added to the system.

6.3.1 TestBed: Replication of other authentications works

Our benchmarking tool was harnessed to replicate and verify the outcomes of the previously
mentioned study by Arias-Cabarcos et al. [20] . Their study also delved into dataset ERPCORE:
N400, mirroring our own research approach. Employing our tool, we meticulously evaluated the
performance across this dataset, leveraging the following parameter configurations.

Datasets: ERPCORE: N400

Utilized Parameters:

• Epoch Interval: 1 second

• Epochs Rejection threshold: 250µV

• Features: AR, PSD

• Classifiers: LDA, SVM, KNN, RF, NB, LR

• Evaluation Type: Within-Session Evaluation

• Threat Case: Close-Set, Open-Set

The aforementioned parameter settings closely mirror those employed in the two referenced
studies, with one exception: we incorporated an "Epochs rejection at 250µV" preprocessing
step. In alignment with both studies, our benchmarking encompassed the application of AR
and PSD for feature extraction and an assortment of classifiers, including LDA, SVM, KNN,
RF, NB, LR. We selected "Within-Session Evaluation" for the parameter evaluation type, given
the single-session nature of the dataset ERPCORE: N400. Additionally, we set parameters for
both "Close-Set" and "Open-Set" threat-case scenarios, mirroring the focused exploration of seen
and unseen attacker scenarios in the study by Arias-Cabarcos et al. [20].

Results: As depicted in Table 6.3, our tool’s results align with the findings of Arias-Cabarcos
et al. [20] study. It is noteworthy that RF stands out as the most e�ective classifier among all
the SOA algorithms, mirroring the observations from Arias-Cabarcos et al. [20]. For instance, in
Arias-Cabarcos et al.’s study, the EER achieved by the RF classifier was 1.04% for the close-set
scenario and 1.9% for the open-set scenario. Our tool reached an EER of 1.53% for the close-set
scenario and 1.95% for the open-set scenario. Our achieved EER for the RF classifier closely
resembles the results of Arias-Cabarcos et al.’s study. Similarly, for the KNN classifier, our
achieved EER of 20.22% is slightly lower than the 20.9% EER attained in Arias-Cabarcos’ work
under close-set settings, indicating minimal disparity between the two results. Additionally, we
notice a slight variance in the achieved EER for classifiers like LR, SVM, and LDA between our
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Table 6.3: The table displays the mean %EER and FRR at 1% FAR for the dataset ERP-

CORE: N400 [85] using within-session evaluation scheme, comparing di�erent classifiers

and threat case scenarios. The values in the table are shown in percentages.

Metric Dataset LDA SVM LR RF KNN NB
Close-Set

EER ERPCORE: N400 3.09 ± 2.80 5.44 ± 3.79 3.44 ± 2.36 1.53 ± 0.87 20.22 ± 9.41 11.50 ± 5.76

FRR at 1% FAR ERPCORE: N400 13.72 16.50 9.19 1.84 50.76 70.55
Open-Set

EER ERPCORE: N400 5.63 ± 4.40 6.63 ± 4.22 5.14 ± 3.73 1.95 ± 1.56 20.62 ± 10.36 11.01 ± 7.31

FRR at 1% FAR ERPCORE: N400 41.25 21.90 32.02 4.56 55.34 62.84

study and Arias-Cabarcos’ research. For instance, our obtained EER for the LDA classifier in the
open-set scenario is 5.63%, marking a 24.3% enhancement compared to the corresponding result
of Arias-Cabarcos et al. The outcomes of classifiers LR, LDA, and SVM in our study slightly
outperform those achieved in Arias-Cabarcos et al.’s study for the same classifiers. The minor
discrepancies can be attributed to several factors. In our research, the available samples for the
ERPCORE: N400 dataset after the pre-processing step were 2097, slightly fewer than the 2,268
samples obtained in Arias-Cabarcos et al.’s work. Moreover, our approach to extracting PSD
features from raw epochs involved dividing the 1-second ERP epoch into four equally sized time
windows with a 50% overlap between each window. This segmentation aimed to distinguish the
genuine frequency modulation of the EEG, driven by attention, from potential artifacts induced
by the attentional modulation of ERPs [123]. Conversely, precisely implementing PSD features
in Arias-Cabarcos et al.’s work needs explicit details. Therefore, the minor variations could also
be attributed to di�erences in the calculation of the PSD for each epoch between our study and
that of Arias-Cabarcos et al.’s study.

When evaluating the classifiers’ e�ectiveness using the FRR at 1% FAR metric, a striking
correlation emerges through a comparison between our study and the research conducted by
Arias-Cabarcos et al. [20]. In a close-set setting, the SVM classifier in our study achieved an
FRR at 1% FAR of 16.50%. At the same time, they attained 16.9% for the same SVM classifier
in an identical threat scenario, revealing only a marginal variance of 0.40%. Moreover, our
investigation unveils a noticeable disparity in performance between open-set (unknown attackers)
and close-set (known attackers) scenarios across most classifiers, particularly LDA and LR. As
depicted in Table 6.3, classifier LDA experiences a substantial increase of 200.65% (from 13.72%
to 41.25%) in FRR at 1% FAR when transitioning from a close-set to an open-set scenario.
A similar decline in classifier performance is evident in Arias-Cabarcos et al.’s work, where the
FRR at 1% FAR for classifier LDA escalates by 257.37% (from 12.2% to 43.6%) when comparing
close-set and open-set scenarios, aligning with our observations.
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Our study introduces a highly adaptable benchmarking framework capable of conducting com-
prehensive performance comparisons across diverse datasets and employing SOA and advanced
deep learning techniques. Intending to enhance the practicality of our tool, we have meticulously
designed it to accommodate authentication scenarios involving previously unseen attackers, ren-
dering our benchmarking approach more aligned with real-world situations. However, it is
essential to acknowledge that our tool does possess certain limitations, which we will delve into
in the upcoming sections, thereby providing a comprehensive perspective on its capabilities and
constraints.

7.1 Exclusive Emphasis on ERP Datasets

Our research has focused on gathering predominantly ERP datasets, aligning our benchmarking
tool’s design with ERP paradigms like P300 and N400. The choice to give priority to ERP
datasets, as discussed in section 4.1.1, is based on their favorable Signal-to-Noise Ratio (SNR)
and less susceptibility to background disturbances [89]. Although the criteria above provide
a strong justification for our decision, it is essential to acknowledge the possibility of further
expanding the tool’s capabilities by including EEG data obtained from other tasks, such as
resting and motor imagery datasets. Such an expansion could e�ectively broaden the utility of
our tool, catering to a broader spectrum of researchers engaged in brainwave authentication,
who often explore diverse EEG datasets beyond the limitations of ERP paradigms.

7.2 Constrained Examination of Multi-Session Datasets

Our study incorporated three single-session datasets and a sole multi-session dataset. In section
6.2.1, we conducted comparative analyses, facilitating comprehensive performance evaluations
across various datasets. This comparative assessment of EEG-based authentication systems
through di�erent datasets o�ers valuable insights into the system’s adaptability, robustness,
and generalizability. By scrutinizing the behavior of authentication algorithms across diverse
datasets, we can discern performance consistency patterns, identify algorithms’ strengths and
weaknesses, and assess their reliability under varying conditions. Nevertheless, it is essential to
recognize a constraint in our study, which revolves around the fact that we only had access to a
single multi-session dataset. While we were able to conduct extensive evaluations with the single-
session datasets, the scope of our research was somewhat restricted in terms of benchmarking
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brainwave authentication systems against multi-session datasets. Employing solely one multi-
session dataset inherently narrows the spectrum of our exploration and the depth of our findings.
A broader range of multi-session datasets could have significantly enriched the scope of our
research and further extended the applicability of our benchmarking tool. Therefore, more
multi-session datasets should be incorporated into the benchmarking tool.

7.3 Sub optimal Siamese Network Training in Cross-Session

Evaluation

The results of our cross-session evaluation demonstrated less favorable outcomes than the per-
formance observed in the dataset authentication conducted in a single session. The expectation
was that utilizing Siamese Networks, capable of capturing intrinsic brain patterns through deep
learning, would yield improved outcomes. This phenomenon can be attributed to the inherent
capability of deep learning approaches to e�ectively adapt to diverse multi-session EEG data,
in contrast to traditional algorithms that operate on predetermined features. Indeed, there
exist empirical investigations that provide support for this notion. For example, the study by
Maiorana [83] reported an EER below 7% using Siamese Networks for subject verification in a
cross-session setup. Similarly, Seha and Hatzinakos in 2020 [87] achieved remarkable outcomes,
attaining EER levels between 2-4% for cross-session evaluation through deep learning methods.
However, our chosen approach for training and testing multi-session data could be the reason
behind the suboptimal performance in our cross-session evaluation. Our strategy involves em-
ploying EEG data from two sessions for training and utilizing the remaining session data for
testing. While this training and testing strategy aligns with certain studies like [21, 130, 16], it
has contributed to the less satisfactory outcomes in our specific case.

The underlying principle of Siamese Networks is around the recognition of people through
the analysis of similarities between registered brain samples and those presented during the
verification procedure. Using a training strategy incorporating two separate sessions representing
various temporal points inadvertently introduces unpredictability into the training process. The
EEG data obtained during these two sessions may display significant variations due to di�erent
circumstances, including cognitive states, environmental stimuli, and the person’s physiological
parameters. As a result, the acquired embeddings from these sessions will probably exhibit
variations, which might undermine the network’s capacity to develop persistent patterns of
similarity. When these variable embeddings from the two training sessions are compared against
those from the remaining session during testing, disparities in EEG data patterns can lead
to dissimilarities in the resultant embeddings. This inconsistency in embeddings makes the
task of similarity comparison challenging and can subsequently contribute to the suboptimal
performance we have observed.

Moreover, it is worth noting that employing data from two sessions for training, mainly
when these sessions are seven days apart, introduces a layer of assumption that may not re-
flect real-world scenarios. Assuming that individuals would be prompted to register twice into
an authentication system within a short timeframe is often not aligned with practical usage
scenarios.
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8.1 Conclusion

In this study, we have successfully developed a robust benchmarking framework tailored for
EEG-based authentication systems, utilizing four publicly available ERP datasets. Our com-
prehensive evaluation included a range of state-of-the-art algorithms, encompassing LR, LDA,
SVM, NB, KNN, RF, and deep learning techniques like Siamese Neural Networks. Our evalua-
tion strategy incorporated both within-session and cross-session assessments, focusing on close-
set and open-set scenarios to ensure the tool’s applicability in diverse contexts. Remarkably,
during within-session evaluation, our results demonstrated exceptional performance for several
classifiers, including RF, Siamese, SVM, LDA, and LR. We achieved an impressively low EER
of just 1.60% when evaluated with Siamese Networks in the unseen attacker scenario. However,
we also observed challenges during cross-session validation, where EER values increased for
most classifiers. This highlights the importance of further research and development to enhance
cross-session performance.

Moreover, our benchmarking framework’s flexibility stands out as a valuable asset. It empow-
ers researchers to customize pre-processing, feature extraction, and authentication parameters
according to their needs. The straightforward process, facilitated by a user-friendly YAML
configuration file and automated benchmarking scripts, ensures ease of use and minimizes the
complexity of programming. As we conclude this thesis, it is evident that our benchmarking
tool holds promise for advancing the field of EEG-based authentication. Its open availability
will provide researchers with a valuable resource to explore and assess its capabilities, furthering
our collective understanding of brainwave authentication. Additionally, as we continue to refine
and enhance this tool, we envision a future where it contributes significantly to the development
of secure and e�cient authentication systems based on EEG data.

8.2 Future Works

The potential of our benchmarking e�orts can be significantly broadened by incorporating a
broader array of multi-session datasets. Looking ahead, expanding the dataset collection within
our tool is essential to encompass those o�ering multiple sessions. These datasets inherently
create a more authentic environment, closely reflecting real-world scenarios. Therefore, im-
plementing benchmarking exercises using these datasets would enhance the understanding of
inter-session variability and provide researchers who utilize our tool with a more comprehensive
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and holistic viewpoint. Using this strategic method exhibits the potential to augment the re-
silience and durability of our benchmarking framework, hence fostering profound research and
innovation in EEG-based authentication.

Furthermore, as we have previously addressed the limitations of our cross-session evaluation
approach in section 7.3, we propose future enhancements to refine this strategy. We recommend
a revised cross-session evaluation methodology in the context of multi-session datasets. This
involves training the Siamese Networks utilizing the EEG data from one of the sessions using the
Triplet Loss technique. Subsequently, for verification, EEG data from the remaining sessions are
employed. To illustrate, consider the COG-BCI dataset featuring three EEG sessions per subject.
We advocate training the Siamese model with data from session one to generate embeddings from
the raw EEG data. The trained Siamese model can generate these embeddings from sessions
two and three. Ultimately, the similarity of the embeddings from session two and session three
can be individually compared with the enrolled brain embeddings using the Euclidean distance.
The proposed methodology allows for the individual evaluation of a subject’s data from each
session compared to the enrolled samples, resulting in authentication through the determination
of similarity. Adopting this suggested alteration can improve the e�ectiveness of cross-session
evaluation, hence o�ering a more precise and reliable assessment of EEG-based authentication
over numerous sessions for each individual.

Finally, it is essential to emphasize that our benchmarking tool will be available to the public.
This release will allow academics and developers in brainwave authentication to investigate its
practicality and e�ectiveness directly. As the availability of this tool increases, its acceptance
and use by di�erent stakeholders will contribute to a complete assessment of its e�cacy across
numerous situations. Moreover, it is essential to acknowledge that, like any tool, ours does
have inherent limitations. However, these limitations can be addressed and refined through the
collaborative e�orts of researchers who employ the tool. This iterative improvement process will
undoubtedly enhance the overall applicability and value of this benchmarking tool, ultimately
benefiting the entire brainwave authentication field.
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Appendix

A

The benchmarking tool is available in our GitLab repository at the following URL: https:
//github.com/Avichaurasia/Brain-Models. The tool has been built using Python and in-
corporates various statistical and machine-learning Python packages. Hence, it is imperative to
establish a Python environment as a first step.

Setting Up the Python Environment

To successfully run this Python project, creating and configuring a suitable Python environ-
ment is essential. The following steps need to be followed to set up the environment:

1. Python Installation: Initially, verifying the presence of Python in our operating system
is crucial. If Python is not pre-installed, it can be acquired straight from the o�cial Python
website. Subsequently, we adhere to the installation instructions outlined in the website,
customized to suit our operating system. If Anaconda has been successfully installed,
it is noteworthy to mention that the Anaconda installation often includes the Python
programming language. If the action above is taken, it is possible to go to the subsequent
stage.

2. Anaconda Installation (if needed): Suppose Anaconda is not currently installed, and
it is desired to utilize it to manage Python environments. In that case, it is possible to get
the software by downloading it from the o�cial website, which can be accessed at Ana-
conda. Anaconda installation may be accomplished according to the instructions tailored
to each operating system. Anaconda provides a user-friendly method for creating and ad-
ministrating virtual environments through the use of Conda. This specific characteristic
has significant value in data science and scientific computing initiatives.

3. Virtual Environment Creation: It is advisable to establish a virtual environment to
segregate the dependencies of this specific project from other Python packages installed on
our system. Virtual environments help maintain clean and distinct Python environments
for individual projects. To create a virtual environment, follow these steps:

• Navigate to Project Directory: To begin, we access the terminal or command
prompt and proceed to the project’s root directory by utilizing the cd command.
For example: cd /path/to/project
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• Environment Configuration File: Check if the project includes an environment
configuration file. This file is typically named environment.yml or requirements.txt
and lists the required Python packages and their versions.

• Create Virtual Environment:Subsequently, the requisite command is executed
to generate a virtual environment by using the configuration file. An example of a
command that may be used for Conda environments is the use of a environment.yml
file:
For example: conda env create -f environment.yml

we can also utilize requirement.txt to create the virtual environment by using the pip
command:
python -m venv venv
source venv/bin/activate
pip install -r requirements.txt

4. Activate the Virtual Environment: After the virtual environment has been estab-
lished, proceed to activate it. Activation is a crucial process that guarantees using an
isolated environment and its corresponding dependencies in our project. To activate the
conda environment, it is necessary to utilize the proper command according to the oper-
ating system in use:
For example: conda activate master_thesis (for MacOS/Linux)

Edit Configuration File: Upon activating the Conda environment, navigate to the desig-
nated project directory. A file named single_dataset.yml can be located within the "configura-
tion_files" folder. The single_dataset.yml file is adjusted based on the exemplified configurations
in the following sections.

Execute the Automation Script: Launch the automated script single_dataset_benchmark.py
in Python. This script streamlines all the tasks related to data preprocessing, feature extraction,
and classification for a single dataset. It conducts benchmarking assessments across multiple
classifiers for the specified dataset.

A.1 Appendix: YAML Configuration for Within-Session Eval-

uation

A.1.1 Configuration with Default parameters for Dataset and Pre-processing

Pipeline

Listing A.1: Benchmarking pipeline using the dataset’s default parameters and auto-regressive
features with SVM classification

name: " BrainInvaders2015a "

dataset :
- name: BrainInvaders2015a

from: deeb. datasets
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pipelines :
"AR+SVM ":

- name: AutoRegressive
from: deeb. pipelines

- name: SVC
from: sklearn .svm
parameters :

kernel : ’rbf ’
class_weight : " balanced "
probability : True

Run the Python file single_dataset_benchmark.py from the terminal with the command "python
single_dataset_benchmark.py".

A.1.2 Pipeline Incorporating Dataset Parameters and Auto-Regressive Or-

der

Listing A.2: Benchmarking pipeline using dataset’s parameters and Auto Regressive order with
SVM classification

name: " BrainInvaders2015a "

dataset :
- name: BrainInvaders2015a

from: deeb. datasets
parameters :

subjects : 10
interval : [-0.1, 0.9]
rejection_threshold : 200

pipelines :
"AR+SVM ":

- name: AutoRegressive
from: deeb. pipelines
parameters :

order: 5

- name: SVC
from: sklearn .svm
parameters :

kernel : ’rbf ’
class_weight : " balanced "
probability : True

A.1.3 Pipeline Utilizing Both Auto-Regressive (AR) and Power Spectral

Density (PSD) Features
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Listing A.3: Benchamrking pipeline for dataset BrainInvaders15a with AR and PSD features
with classifier SVM

name: " BrainInvaders2015a "

dataset :
- name: BrainInvaders2015a

from: deeb. datasets
parameters :

subjects : 10
interval : [-0.1, 0.9]
rejection_threshold : 200

pipelines :
"AR+PSD+SVM ":

- name: AutoRegressive
from: deeb. pipelines
parameters :

order : 5

- name: PowerSpectralDensity
from: deeb. pipelines

- name: SVC
from: sklearn .svm
parameters :

kernel : ’rbf ’
class_weight : " balanced "
probability : True

A.1.4 Pipeline Incorporating Siamese Neural Network

Listing A.4: Benchamrking pipeline for dataset BrainInvaders15a with Siamese Networks
name: " BrainInvaders2015a "

dataset :
- name: BrainInvaders2015a

from: deeb. datasets
parameters :

subjects : 10
interval : [-0.1, 0.9]
rejection_threshold : 200

pipelines :
" Siamese ":

- name : Siamese
from: deeb. pipelines
parameters :
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EPOCHS : 10
batch_size : 256
verbose : 1
workers : 1

A.1.5 Pipeline Combining Traditional Algorithms and Siamese Neural Net-

work

Listing A.5: Benchamrking pipeline for dataset BrainInvaders15a with traditional and deep
learning methods

name: " BrainInvaders2015a "

dataset :
- name: BrainInvaders2015a

from: deeb. datasets
parameters :

subjects : 10
interval : [-0.1, 0.9]
rejection_threshold : 200

pipelines :s
"AR+PSD+SVM ":

- name: AutoRegressive
from: deeb. pipelines
parameters :

order: 6

- name: PowerSpectralDensity
from: deeb. pipelines

" Siamese ":
- name : Siamese

from: deeb. pipelines
parameters :

EPOCHS : 10
batch_size : 256
verbose : 1
workers : 1

- name: SVC
from: sklearn .svm
parameters :

kernel : ’rbf ’
class_weight : " balanced "
probability : True
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A.2 Appendix: YAML Configuration for Cross-Session Evalua-

tion

A.2.1 Pipeline Combining Traditional Algorithms and Siamese Neural Net-

work for Cross-Session Evaluation

Listing A.6: Benchamrking pipeline for multi-session dataset COGBCI: FLANKER with tradi-
tional and deep learning methods
name: " COGBCIFLANKER "

dataset :
- name: COGBCIFLANKER

from: deeb. datasets
parameters :

subjects : 10
interval : [-0.1, 0.9]
rejection_threshold : 200

" Siamese ":
- name : Siamese

from: deeb. pipelines
parameters :

EPOCHS : 10
batch_size : 256
verbose : 1
workers : 1

pipelines :

"AR+PSD+SVM ":
- name: AutoRegressive

from: deeb. pipelines
parameters :

order: 6

- name: PowerSpectralDensity
from: deeb. pipelines

- name: SVC
from: sklearn .svm
parameters :

kernel : ’rbf ’
class_weight : " balanced "
probability : True
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